
00 DAVID W. TAYLOR NAVAL SHIP

RESEARCH AND DEVELOPMENT CENTER ,
"Bethesda, Maryland 20084

ZOG/VINSON TECHNOLOGY DEMONSTRATION PROJECT

SYSTEM DESCRIPTION

VOLUME II

by

Donald J. Schmelter D T IC
Ron Lupish E•• - E-

MAY 211985j

*4 B

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIX!TED

C z4

L.L.I COMPUTATION, MATHEMATICS, AND LOGISTICS DEPARTMENT
)DEPARTMErTAL REPORT

z
S> L February 1985 DTNSRDC/CMLD-85/02

L4JDW-DTNSRDC 5802/30 (2-80)O&
(supersedes 3960/46)

S. #, ., .. ** . . ''-,'. .= . *. . , . . ,.-. . ,,=. p •• F-. *.-. - , , -o.-• , .* g -.. ,,- _••,••• , ••.. . .r •"""""""• ""'"-

SMAJOR DTNSRDC ORGANIZATIONAL COMPONENTS

DTNSRDC

COMMANDER

"TECHNICAL DIRECTOR
01

' OFFICER-IN-CHARGE OFFICER-IN-CHARGE

CARDEROCK ANNAPOLIS
05 04

SYSTEMS
DEVELOPMENT
DEPARTMENT

, "',11

SHIP PERFORMANCE AVIATION AND

DEPARTMENT SURFACE EFFECTS
___________DEPARTMENT DEPARTMENT

"15 16

"•'"'" STRUCTURES 1_COMPUTATION,
STRUCURESMATHEMATICS AND

~1. DEPARTMENT I LOGISTICS DEPARTMENT
17 18

PROPULSION AND
•,.:-"" SHIP ACOUSTICS _AUXILIARY SYSTEMS

DEPARTMENT DEPARTMENT
19 27

SHIP MATERIALS CENTRAL
"ENGINEERING INSTRUMENTATION
"DEPARTMENT DEPARTMENT

"28 29

8 4.3

GPO;r74_ NDW-DTNSRDC 3960/43b tRe". 2.80!)

_+" UNCLASSIfED
SECURITY CLASSIFICATION OF THISr PAG"

REPORT DOCUMENTATION PAGE
UREPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED
2 2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

____--__,,_,__,,,._....__, APPROVED FOR PUBLIC RELEASE: DISTRIBUTION
2b DECLASSIFICATION /DOWNGRADING SCHEDULE UNLIMITED

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

DTNSRDC/CMLD-85/02

6a NAME OF PERFORMiNG ORGANIZATION 6b OFFICE SYMBOL 7a, NAME OF MONITORING ORGANIZATION(if applicable)

David Taylor Naval Ship R&D de 1826
renter Cdep 1826e

6c ADDRESS (Crit, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)

Bethesda, MD 20084-5000

Ba. NAME OF FUNDING/SPONSORING [b OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
Office of Naval Research Code 270

8c ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM I PROJECT I TASK WORK UNIT
Arlington, VA 22217 ELEMENT NO. NO INO. ACCESSION NO.

627631 °RF63521 11826008
II TITLE (Include Security Classification)

ZOG/VINSON TECHNOLOGY DEMONSTRATION PROJECT: SYSTEM DESCRIPTION, VOLUME II

12 PF.RSONAL AUTHOR(S)
Donald J. Schmelter, Ron Lupish

"13a. TYPE OF REPORT I13b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 5. PAGE COUNT
* Final FROM Mar 81 TO Oct 84I February 1985 I 300

16 SUPPLEMENTARY NOTATION

"17 _ COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP

*, III
19 ABSTRACT (Continue on reverse if necessary and identify by block number)

The ZOG system is a user-modifiable, menu-oriented, rapid response human-computer
interface on a network of powerful workstations, the PERQ Systems Corporation's PERQ micro-
computers. Thi's document describes how the ZOG system operates. This is not a user's guide
but a descript:Lon of what is behind all of the menu creation and other standard features.

This document is divided into four separate and distinct volumes. It was written this
way to best describe the total system while keeping volumes apart so as to make each one
accessible without having to go through the others. The first volume is the ZOG System
Descriptioa. The system description includes a description of:
An overview of the ZOG system, the initialization process, basic system flow, how accessing
frames and subnets is accomplished, ZOG utilities, ZOG editors and ZOG agents.
The second volume is ZOG Structures. This volume lists all of the differenct structures
used within the code that makes up ZOG.
The third volume is ZOG Files. ZOG Files lists and describes all of the files that ZOG 7

"" 20 DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
"* Li UNCLASSIFIED/UNLIMITED 0 SAME AS RPT 0 DTIC USERS UNCLASSIFIED

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) I 22c. OFFICE SYMBOL
Donald J. Schmelter (202) 227-1622 Code 1826

DD FORM 1473, 84 MAR 83 APR edition may be used until eihausted SECURITY CLASSIFICATION OF THIS PAGE
All o~her editions are obsolete

IPNCLASS !FIED +

,, UNc LASs IFED
SECURITY CLASSIFICATION OF THIS PAGE

(Block 19) Continued
needs in order to run. These files are in addition to all of the 'source and executable
files that make up the ZOG system.
The fourth volume is ZOG Modules. ZOG Modules goes through ZOG, module by module,
describing what is going on.

Each of the four volumes has a different function. The system description i.s useful
for an overall view of how ZOG functions. The structures volume is good for a quick
"reference of what all of the ZOG records and types are. The files volume is useful to
see exactly what files ZOG needs and what they are used for. The modules volume is
extremely useful for actually going into the pascal code and seeing how ZOG works on a
module level.

5,Ir

•;T)-. C •j

A F

* I

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

ZOG Structures

%. ._w-. ,--b,:ý , -* -ý-

ZOG T.RUCTURES PAGE I

Table of Contents
"1. Structure of a ZOG Frame 1

1.1. Pascal Record structure of ZOG frame: FTyp 1
1.2. ZOG TypeDefs 2

1.2.1. Frame Pointer 2
1.2.2. Frame ID 2
1.2.3. User Ids 3
1.2.4. Frame Protection 3
1.2.5. PosTyp = integer; For storing row and column information 3
"1.2.6. SeIPTyp 3
1.2.7. FsPTyp 4
1.2.8. Fs15PTyp and UsrldPTyp 4

2. Backup Stack Structure 4
2.1. Pascal Definition of the ZOG Backup Stack 4

3. Window Structure 5
3.1. Pascal Definition of the ZOG Window Structure 5

4. User Display Text Buffer: 5
5. Canvas Structures 6

5. 1. Canvas Type 6
5.2. Canvas Event Record 6

6. NetStack Record Structure 7
7. ZOGNet Server Related Structures 7

7.1. Hashed table of subnets 7
7.2. Hashed Table of subnets (Local Subnet Index). 8
7.3. List of open frames 8

8. EtherNet Service Related Structures 8
8.1. List of available EtherNet Servers 8
8.2. ZOG Ethernet message and buffer types 9

8.2.1. ZOGMsgTyp 9
8.2.2. ZogBufTyp 10

8.3. Ethernet Request packet records 10
,8.3.1 Open Frame Request Packet 10
8.3.2. Open Frame Reply Packet 11
8.3.3. Close Frame Request Packet 11
8.3.4. Close Frame Reply Packet 1 12
8.3.5. Close Frame Reply Packet 2 12

P. 9. Editor Structures 12
9.1. Delete Buffar 12
9.2. Current text position 13
9.3. Item types 13
9.4. Types for maintaining selected text -- Not Currently Used 13

9.4.1. Strlnfo = Record A structure to store selected substrings 13
9.4.2. Selections = Record The structure which holds the entire selected string, 13

and related information
9.5. Back Room Editor Type for options 14

11L . . .

ZQiSTRUCTUILBE PAGE 1

ZOG Structures

This subnet outlines the basic ZOG structures used throughout the ZOG system software.

* Structure of a ZOG Frame

* * Backup Stack Structure

* Window Structure

* User Display text buffer

0 Canvas Structure

" NetStack Record Structure

_ ZOGNet Server Related Structures

* EtherNet Service Related Structures

0 Editor Structures

1. Structure of a ZOG Frame
The information given here can be found in code form in ZOG Module NetDefs.

1.1. Pascal Record structure of ZOG frame : FTyp

The ZOG Frame record structure is defined In Module NetDefs as follows:
NextFr FPTyp; Pointer to next frame

FramelD FIdTyp; Frame Id

Owners UsrldPTyp; List of Frame owners

CrDate long; Creationi Date of frame

Moditier U.,rldTyp; Last modifier of frame

ModDate long; Date of last modification

ModTiiie long; Time of lIkst modification

Version integer; Frame Version number

Prot ProtTyp; Proteotion code of Frame

AgCrBit boolean; True if created by agent

AgModBit boolean; True if modified by agent

Title SeIPTyp; Pointer to frame title

Text SeIPTyp; Poin!er to frame text

91

Z -g STRUCIURES PAGE 2

.Cpions SeIPTyp; Pointer to frame options

LPads SeiPTyp; Pointer to frame local pads

GPad FIdTyp; Frame ID of global pads frame

Comment FsPTyp; Pointer to comment strings

Accessor Fsl 5PTyp; Pointer to Accessor Frame Ids not used

1.2. ZOG TypeDefs

Many of these structures used in defining a ZOG Frame are also used throughout the ZOG system.

Some of these structures are accessed via pointers. These types are discussed below:

* FPTyp = tFTyp; Pointer to a Frame Record

* FIdTyp = string[15]; Stores Frame Ids

0 UsrldTyp = string[15]; Stores user Names

• ProtTyp integer; UnProt, ModProt, WrProt, RdProt

* PosTyp = integer; For storing row and column information

* SelPTyp Pointer to a selection record

* FsPTyp Pointer to a linked list of strings

• Fs15PTyp and UsrldPTyp Pointers to linked lists of short strings

1.2.1. Frame Pointer

The definition of a frame pointer is simply as a pointer to a frame record. Examples of frame pointer

variables used thro~ughout ZOG are FPX, EdFP, and SledFP.

1.2.1.1 FPTyp = IFTyp; where FTyp is the frame record definition

1.2.1.2 FTyp a Record

- See Section 1.1, page p. 1.

"1.2.2. Frame ID

The Frame ID is defined within ZOG Pascal code to be a string of length 15. It is composed of the

"concatenation of a Subnet Name with an integer in character form. Since the maximum length of a

Frameld is 15, this implies a maximum length (in characters) of a Subnet Name of 11 charactert,

*t which will provide for a subnet of up to 9999 frames. Although this is the case, the SubnetlD type is

also defined as a string of length 15. The formal definitions are:
FidTyp string[1 5]; Frame Id Type

- 2-

ZOG IRLITLIMPAGE 3

SidTyp string[15]; Subnet Id (name) Type

1.2.3. User Ids

User IDs are variables used to store the name of the currently logged on user. The definition is a

string of length 4, 5, which imposes a limitation on the length of the user names which can be added to
the PERO user list via UserControl. User Ids are used to identify the creator and moditier of frames.

1.2.4. Frame Protection

Every frame is assigned a protection, the default being no protection at all. The protection variable
within a frame record is defined as an integer. Frames can be protected against modification, writing

and reading. Frames can only be protected by the owner against the "rest of the world"; there is no

notlon of group access/protection privileges other than multiple-owners.

Frame protection is coded as:
0 No Protection; UnProt = 0

K7 1 Protection from being modified; ModProt - 1

2 Protection from being written; WrProt = 2

3 Protection from being read; RdProt = 3

3 1.2.5. PosTyp = integer; For storing row and column information

1.2.6. SeIPTyp

"SeIPTyp is a pointer to a linked list of item records within a frame. Its name implies a "selection"

record, although these structures are used for frame text and title as well. Items marked below with a

"" are not applicable for frame text and title. -,

K char; 0 Selection character

NF FIdTyp; * Next frame

Text FsPTyp; Pointer to linked list of item's text
I~

SRow PosTyp; Item Row Position

Column PosTyp; Item's Column Position

LO PosTyp; Item's Minimum Row Position - "top edge"

CO PosTyp; Item's Minimum Column Position. "left edge"

L1 PosTyp; Item's Maximum Row Position - "bottom edge"

C1 PosTyp; Item's Maximum Column Position - "right edge"

Action FsPTyp; Item's associated Action(s) (in text form)

Expand FsPTyp; Item's associated Expansion Area, for misc. use

* ZOG STRUCTURES PAGE 4

ExtraFids FsPTyp; Fields not currently used - possible later use

PrevSe/ SelPTyp; ' Pointer to previous Item

Nex!Se/ SeIPTyp; ° Pointer to next item

1.2.7. FsPTyp

FsPTyp is a pointer to a doubly linked list of "frame" strings, although it is used throughout ZOG as

a pointer to a linked list of genaralized strings of (default) length 80. Its Pascal definition is FsPTyp

tFsTyp, where FsTyp is a record defined as:
text string; string is default length of 80 characters

prey FsPTyp;

next FsPTyp;

1.2.8. Fsl 5PTyp and UsrldPTyp

Fs15PTyp and UJsrldPTyp are pointers to short, strings (i.e., strings of length 15, which are used

within ZOG for a variety of purposes). They are used throughout ZOG as general pointers to a linked

list of short strings. They are both defined as = TFs15Typ, where Fs15Typ is a record defined as:
text string[15]

prey Fs15PTyp

next Fsl5PTyp

2. Backup Stack Structure
ZOG maintains an ongoing list of frames visited on a stack structure while the user is traversing

ZOG nets. This stack is basically a doubly linked list structure, for which added storage is dynamically

allocated as necessary. Entries are removed (popped) from this structure as the user goes "back" up

the tree of frames.

This structure is defined in module ZWind, but is maintained by module ZBack. Its definition is:

2.1. Pascal Definition of the ZOG Backup Stack

BackPTyp = tBackTyp

BackTyp = RECORD
Framed/d FIdTyp; Frame ID of frame on the stack

SeiCh char; Selection character that was used in departing from this frame

Nxt BackPTyp; Pointer to next record on stack

Pry BackPTyp; Pointer to previous record on stack

"-GSTR U. TT.PAGE 5

"3. Window Structure
The ZOG Window Management Module, ZWind, keeps track of all the information necessary to

maintain the displays of frames in each of the ZOG windows. It does this by maintaining a record for

each window. These dynamically allocated records contain such information as current frame id and

version number, a pointer to current frame record, global pads frame id and pointer to GPads record.

It also keeps track of the top (i.e., the last or most recent) frames on the Backup and Mark stacks.

This record keeps track of which alternate global pads frame (if any) is being displayed.

3.1. Pascal Definition of the ZOG Window Structure

WindPTyp = t'WindTyp; Pointer to the window structure

WindTyp = RECORD
Number integer; This window's ZOG Window number(1 or 2)

Canv integer; ZOG Canvas number for this window

BackP BackPTyp; Pointer to top frame on Backup Stack

MarkP BackPTyp; Pointer to top frame on Mark Stack

Frameld FIdTyp; Frame ID of current frame

Version integer; Version number of current frame

Se/Char char; Char selected to get to current frame

GFrameld FIdTyp; Frame ID of current Global Pad Frame

DisFrameld FIdTyp; Frame ID of frame currently displayed

SFPX FPTyp; Pointer to current frame record

GFPX FPTyp; Pointer to current GPad frame record

SecSig boolean; True if secondary copy read for display

AItGPads boolean; True if alternate global pads in use

AItGpadFid FIdTyp; Frameld of alternate global pad frame

MarACnt integer; Number of frames "marked"

4. User Display Text Buffer:
The (full-screen) User Display Text Buffer is a dynamically allocated array of strings. At the current

time, the number of elements (i.e., lines of text) in this array is 77, as defined by the local constant,

FullSz. This array is pointed to by local pointer variable, UsrDspP, which is created with a call to

"new" in lnitUser. All accesses to text in either the short or full.length user display are referenced via

this variable.

'I

"ZOG STRUCTURES PAGE 6

PASCAL definitions are given below:

* UsrDspP: UsrDspPTyp;

* UsrDspPTyp = tUsrDspTyp;

o UsrDspTyp = Array[C..FullSz] of string;

5. Canvas Structures
These records are used to keep track of window types and "events" within a window. These

structures are defined in ZCanvas.Defs.

5.1. Canvas Type

This is used to monitor which canvas is the current one.
ZOG iCanvas 1; Canvas for the top frame display window

ZOG2Canvas 2; Canvas for the bottom frame display window

* UserCanvas 3; Small user display window, at bottom of screen

- FullCanvas 4; Full screen user display window

DoubleCanvas 5; Double-sized canvas for displaying big frames

Can vasTyp ZOG1 Canvas..DoubleCanvas;

.- 5.2. Canvas Event Record

CanvEvPtr tCanvEvtyp

CanvEvTyp = record
Ch char; Input character, from keyboard, or mouse char

x,y integer; X,Y Mouse coordinates in pixels (768 x 1024)

Row, Col integer; Mouse coordinates in chars, relative to window

KeySig boolean; True if keyboard or mouse input, false otherwise (i.e., If only mouse
movement)

Canv CanvasTyp; Canvas from which the event arose

ChgSig boolean; True if a change of windows occurred

NextEv CanvEvPtr; For queueing up canvas events

E

ZOG STRUCTURES PAGE 7

6. NetStack Record Structure
FStkTyp a record

This structure was used extensively throughout ZOG for keeping track of frames traversed,

particularly in agents which need to traverse trees exhaustively. However, since it doesn't stack

frame records, popping the stack requires re.reading previously read frames. Since this requires disk

I/0, it proved to be much faster- using the stack declared in StackLib.

NetStack exports record variable FStkX as a global frame stack for use in ZOG with pointer variable

FPX for the pointer to the current frame. Routines in NetStack read frames into this record, and use

FPX as the default frame record pointer.
£k Frameld FIdTyp; Frame ID of top frame on stack

FldP Fsl 5PTyp; Pointer to list of saved frame Ids

FP FPTyp; Pointer to frame record of top frame on stack

7. ZOGNet Server Related Structures

7.1. Hashed table of subnets

_ This table is EXPORTed from Module ZOGNetServer. It is used to see if a subnet requested by a

user already exists and to hold entries for new subnevs created.

Subnets: Array[O..MaxHashlndex-1] of pSubnetTyp

pSubnetTyp = tSubnetTyp

V SubnetTyp = record
NextSubnot pSubnetTyp; Pointer to ne!;t hashed subnet name

SubnetlD SIDTyp;

MatchlD SIDTyp; SubnetlD converted to all Upper Case

PrimeNode NodeTyp; NodeTyp is an integer

SecCnt integer; Count of number of secondary nodes

SecNodes SNodesTyp; Array[1 ..MaxSecondary] of NodeTyp where MaxSecondary = 5
(NetDefs)

Opened boolean;

'•, ,- ',/ - , •. • * . ..• , , -. : ". • •, • . • • • .'' • *• - • ' ±,.• . : . ,'. . •. • ;. ,. . • , ., ,, .- , ... , .

ZOG STUQTUffj PAGES8

7.2. Hashed Table of subnets (Local Subnet Index).

SnTable represents the local subnet index which Is private to module NetServ. This second subnet

index con'tains low level informiation necessary in accessing subnet files.

SnTable: Array [O..SnHashMx-1] of Sn~ecPTyp

SnRecPTyp - SnRecTyp

SnRecTyp =record

LipS id SidTyp; Stibnet ID convertted to upper case

Sid SidTyp, Subnet ID with true case(for CrF,CrFr)

* PrimeSig Boolean; If true the record is fcr a primary subnet. -

Nxt; SnRec;PTyp; PFir to the next subnet record

Fl/ID FilelD; file system file ID

SZPg Long; size of the file in pages

* 7.3. List of open frames

The list of open frames is private to module NetServ, thus each machine has its own list of open

frames which will consist of the frames opened on that particular machine. These frames can be

opened locally and from a remote machine.

OpnTopP :OpnflecPTyp Ptr to open frame record list

OprnRecPTyp = tOpnRecTyp

OpnRecTyp =record

UserPort EtherAddress; ldentifies user that opened frame -

UpSid SidTyp; Subnet ID of opened frame(stringl5)

Fnr integer; Relative frame number of opened frame

*SnRecP SrtRecPTyp Ptr to subnet record, used by CIsF -

BodySzPg integer; size of frame body In pages

Nxt OpnRecPTyp; Ptr tZo next open frame

8. EtherNet Service Related Structures

8.1. List of available EtherNet Servers

This structure holds the list of PER~s on the current ZOG distributed network. There is room on

*this list for MaxZOGServer (currently 256) EtherNet Servers (i.e. remote PER~s). This structure Is

EXPORTed from Module ZOGNetServer.

Z" STRUCTURES, PAGE 9

Servers: arrey[O..MaxZOGServer.1] of pServerStatus

pServerStatus t tServerStatus

* ServerStatus ;'record
ServerAddr EtherAddress;

ServerUp boolean;

. ServerName string15; Name of machine from Net.Servers

8.2. ZOG Ethernet message and buffer types

This type is used in ethernet communication when the machines are sending or receiving records to

"* -, one another, and when the machines are sending buffers of information to one another. The actual

request and reply packets are recast as ZOG ethernet message types to be sent over the ethernet..Ak
These declarations can be found in Module ZogMsg.

These types were created to allow requests and replys to be sent over the ethernet using only one

"type of record. Recasting a request or reply packet to a message or buffer type means that only one

or routine is necessary for sending and receiving the various record types used for ethernet

"- "communication, even though different processes (reading, opening, closing, etc.) require different

. information. The message and buffer types can be viewed as a black box of information where the

sending and receiving routines kniow the structure of the information contained, but the actual packet

* carrying that information does not know of its structure.

8.2.1. ZOGMsgTyp

ZOGMsgTyp's are used in sending and receiving records.

ZOGMsgPTyp = tZOGMsgTyp

ZOGMsgTyp = packed record
' Id Integer; Message Identifier

LocalAddr EthernetAddress;
Af-,

RemoteAddr EthernetAddress;

RemoteName String15; Name of remote Ethernet machine. Used only when receiving
messages.

GR GeneralReturn; Used only I reply messages to return a possible error message

Body packed array [0..ZogMsgBodySiz-1] of integer;,

Z--9M--I PAGE 10

8.2.2. ZogBufTyp

When buffers are sent or received over the ethernet they are recast as SufPTyp. This Is a generic

pointer (a PERO Pascal extension), which can be used to point at anything (there are restrictions on

its use, refer to the section on Pascal extensions in the PERQ Software reference manual), and is

used here to point to a ZOG page buffer.

BufPTyp = pointer; Ptr to Zog page buffer

ZOGPagePTyp = iZogPageTyp

"ZOGPageTyp = packed array [1..PageWordSize 256] of integer

ZOGBufPTyp a tZOGBufTyp

ZOGBufTyp = packed record Zog Message Buffer type
LocalAddr EthernetAddress

"RemoteAddr EthernetAddrers

RemoteName String15; name of remote ethernet machine

Size integer; 1 indicates a single page, 2 = 2 pages

PgNum integer; counts pages for multiple pg. transfer

Page 1 ZOGPageTyp

Page2 ZOGPageTyp

8.3. Ethernet Request packet records

Module ZogMsgDefs contains the declarations of all of the Ethernet request and reply packets. For

the most part the types contained in this module are the same with small variations in the records, due

to the function of a particular type. Only two of the types will be shown here. The information

contained in these records allows the sending and receiving routinec to acccmplish their purpose (i.e.

opening, closing, etc.). This information is loaded into the appropriate record, recast to a message or

buffer type and sent over the ethernet. On the remote machine, the appropriate receiving routine

knows the structure of the information in the request or reply packet, so it knows where to get tie

information it needs.

*e 8.3.1. Open Frame Request Packet.

OpnFOPTyp = tOpnFOTyp

OpnFOTyp = packed record
Id integer; Constant identifier in ZogMsgDef&

" LocalAddr EthernetAddress;

RemoteAddr EtherNetAddress;

IA

&Qg GRUCTBF.6PAGE I1I

RemoteName St r ingl15;

GR General~eturn; used in return packet

Name UsrldTyp;

AgentFlag Boolean;

Sid Sidryp; Subnet ID

Prime~dode NodeTyp;

SecCnt integer;

Sec Nodes SNodesTyp;,

FrNum integer;

8.3.2. Open Frame Reply Packet

OpnFl PTyp = tOpnFl Typ

L Q~~pnFlTyp =packed recordidtjefrmogses

LocalAddr EthernetAddress;

RemoteAddr EthernetAdaress;

Remot~gName Stringl15;

OR GeneraI~eturn; Return code from remote node

FHf3Cnt long; Count of Frame Header pages

FBCnt long; Count of Frame Body pages

8.3.3. Close Frame Request Packet

A. CIsFOPTyp = tClsFOTyp

CIsFOTyp = packed record
Id integer; Constant identifier in ZogMsgDefs

LocalAddr EthernetAddress;

Rem oteAddr EtherNetAddress;

RemoteName Stringl15;

GR GeneralReturn; used in return packet

Name UsrldTyp;

AgentFlag Boolean;

Sid SidTyp; Subnet ID

FrNum Integer,

ZO- STRUCTURES PAGE 12

. ' FBCnt long; Count of Frame Body Pages

"8.3.4. Close Frame Reply Packet 1

CIsF1PTyp = tCIsFITyp

C0sF 1 Typ packed record
Id integer; Constant identfier from ZogMsgDefs

LocalAodr EtherAddress;

RemoteAddr EtherAddress;

RemoteName String15;

GR GeneralReturn; Return code from remote node

8.3.5. Close Frame Reply Packet 2

CIsF2PTyp = tClsF2Typ

"ClsF2Typ = packed record
Id integer; Constant identfier from ZogMsgDefs

LocalAddr EthernetAddress;

"RemoteAddr EthernetAddress;

RemoteName String 15;

GR GeneralReturn; Return code from remote node

FHBCni long; Count of Frame Header pages

9. Editor Structures
These structures are global within ZED, the ZOG frame Editor.

9.1. Delete Buffer

This buffer stores characters as they are deleted from text anywhere in the frame. It is used for

movirig and copying text within and between frames. The definition and exported (global) variables

are in Module ZEDDefs.

BufP :BufStrP; Global (ZED.wide) delete buffer pointer

BufStrP = tBufStr

BufStr = RECORD
Length integer,

Content array[1 ..1760] of char;

, .- .--- -...-. '.. -

ZP=8..IQTU8E PAGE 13

9.2. Current text position

This record is used to maintain current position information about the current item in a frame being

edited. The 'record type is defined in Module ZDsplnc; the Global variable, CItem, however, Is

exported from Module ZEDDofs.

Cltem: TxtPosTyp; Global (ZED-wide) Current Item record

TxtPosTyp = record
TxtP SeIPTyp; Pointer to current item

Row integer; Current relative row position within item

Column integer; Current relative column position within item

CurStrP FsPTyp; Pointer to current string within item text

9.3. Item types
This is an enumerated variable to keep track of the type of the current item. It is defined and

exported from Module ZEDDefs.
Item Type (ITitle, IText, lOptions, IPads);

Typeltem ItemType;

9.4. Types for maintaining selected text - Not Currently Used

These structures were defined for the proposed enhancement of ZED, to include "Pepper-like"

selection of text for deletion or moving around. This text could be in the current frame or any other

frame.

9.4.1. Strlnfo Record A structure to store selected substrings
Row, LCol, RCol integer; To store selected string starting and ending points

Str string ; NOTE: can only store up to 80 chars

9.4.2. Selections = Record The structure which holds the entire selected string, and

related infurmation
Fid FIdTyp; The frame which contains the selected str

SelP SeIPTyp; Points to the selection containing the selected string

Version, Row, Col integer; Holds the frame version number, and row/column information

Cnts integer;

Lines Array[1 .. 10] of Strlnfo; The text itself

ZOG STRUCTURE. PAGE 14

9.5. Back Room Editor Type for options

"This record allows the "redefinition" of a single line/option in an AirPlan input frame into a nvmber

(up to MaxOpts, currently 10) individual options while the frame is being edited. The option reverts

back to a single option before being written out. Note: Each option on an AirPlan input frame is

identical in layout; hence only the record structure below is necessary, since it applies to all rows

(options) in the input frame.

Field : FieldTyp

FieldTyp = record
Column Array[1..MaxOpts] of integer; Stores starting position of each redefined option in

a given row.

Len Array[1 ..MaxOpts] of integer; Stores the length of each corresponding option.

9-

ZOG Files

I.

I.'

-..-

.

Z LES PAGE I

Table of Contents
1. Input Files for ZOG 1

1.1. :zognet>subnet.index 1
1.1.1. Structure of subnet.index 1

1.2. :boot>Ethernet.Names 2_ t!.•1.3. :zognet;>net.servers 2

1.4. :zognet>zog.animate 3
1.5. .zognet>sec~default 3
1.6. :zognet>zognet.setup 3
1.7. :zognet>help.frame 4

2. ZOG's Output Files 4
2.1. :zog>log>zog.log<n> 4
2.2. :zog>log>exception.log 4

11.

-E

~b -' rv v-~..x I~7 W W r-~. n -e -7 -7 -7

SFILESPAGE I

ZOG Files

In order for ZOG to run, certain files (other than subnets) must be available.

1. Input Files for ZOG
The following files provide information necessary for ZOG to run. These files are opened and read

as part of ZOG's initialization process. All of the information read is stored in memory for fast access

. as ZOG executes normally.

S:rzognet>subnet.index

"0 :boot)Ethernet.Names

* :zognet>net.servers

* :zognet~zog.animate

0 :zognet)sec.default

a :zognetbzognet.setup

* :zogne,>help.frame

1.1. :zognet>su bnet.lndex

* Subnet.lndex is a listing of all the subnets available to ZOG. Each PERQ in the network must have

its own local copy of subnet.index minimally listing the core subnets. At any point in time, only the

master PERQ's subnet.index file may be a complete list of all subnets. It will be necessary to

periodically update each subnet.index file on all other PERQs in the network with the current copy of,

* subnet.index from the master PERQ. This is the responsibility of the local ZOG system maintainer.

During initialization of ZOG, subnet.index is read. Each subnet name is hashed into an internal table

maintained and accessed in Module ZOGNetServer. When a frame from some subnet is requested,

procedures in ZOGNetServer will do a lookup in the local hashed table of subnet.index to find out if

the subnet exists, and if so, on which PERQ it resides. If the subnet name is not found in the local

table, a request will be sent to the master for this information.

1.1.1. Structure of subnet.index

This file is a seqential list of subnet names, with each subnet name followed by information

specifying the nodes (i.e., remote PEROs) on which the subnet resides. Individual PEROs are

identified by a node number (its sequence in file :zognet>Net.Servers). Entries in Subnet.lndex look

like:

Z99 FL-91PAGE 2

F00
2 0
BAZ
116

"where FOO and BAZ are legitimate subnet names. The numbers below each subnet name indicate the

following:

* First numoer is the Node number of the PERO on which the primary copy of the subnet
residas

* Second number indicates the number of secondary copies of the subnet (up to a
maximum of MaxSecondary - 5)

* Additional number(s) indicate the PERQ(s) on which the secondary copies reside

1.2. :boot>Ethernet.Names

File Ethernet.Names contains the Ethernet name of the local PERQ. Users can edit this file to

change the name of their machine; however, this should not be done unless the :zognet>Net.Servers

files on ALL other PERQs in the network are changed correspondingly. If this rule is not followed,

communications with other PERQs on the network will not be possible.

Only the first line of this file is of importance; any other lines in it are ignored by ZOG. Thus, other

names for the local machine could be stored here for later reference.

1.3. :zognet>net.servers

The Net.Servers file is a list of all PEROs on the current ZOG network, by name. This file is read

sequentially in ZOGNetServers.BuildServers to build the global ServersStatus table. The table is

accessed with integers from 0 to (N - 1) where N is the number of PERQs listed. The master PERQ is

always the listed first, and thus is number 0. The node numbers associated with each PERO listed in

*. this file are also the node numbers used in file :zognet>subnet.index.

The name of each PERQ is contained in file :boot>EtherNet.Names. If there is more than 1 line in

this file, the name of the PERO is the name (ASCII string) contained in line 1 of this file.

It is very important that all PEROs in the ZOG network have identical copies of this file, otherwise,

serious inconsistencies in machines' subnet.index files will develop.

ZILEJS PAGE 3

1.4. :zognet>zog.animate

ZOG.animate is used to contain the default mouse cursors of the solid arrow, and the cursor used to

indicate that an Ethernet event is occurring (i.e., that the user is temporarily locked out of ZOG for just

a moment). This second cursor is usually the hollow arrow.

Users can use the special PERQ utility, CursDesign, to edit this file, so as to create a new set of

default cursors for ZOG to use.

If this file is not present, ZOG will only use the POS default mouse cursor of the solid arrow. No

indication is given that the file can't be found, but Ethernet interrupts will not be noticed by the user

other than the keyboard being temporarily locked.

1.5. :zognet>sec.default

This file specifies the default number of the PERO(s) to be used by this machine for secondary

copies of its subnets. Its format is similar to that used in :zognet>subnet.index: The first number

specifies the number of secondary copies for each of the local PERO's subnets there are to be, up to

a maximum of five. The remaining number(s) specify the PERQ(s) these secondary (or backupl)

subnets are to reside on. The PERO node numbers are specified in file :tognet>Net.Servers.

Secondary subnet files are identified by having the file name <Subnet>.sec. These may be located

in partition :zognet on some machines, and in partition :second on others (see :zognet>zognet.setup

for details).

Examples of possible contents of sec.default are:
0 no secondary copies to be made at all

17 1 secondary copy to be maintained on PERQ number 7

3 1 35 3 secondary copies of each subnet to be maintained, one copy on PERQ 1, one
on PERQ 3, and one on PERQ 5.

1.5. :zognet>zognet.setup

This file contains a boolean (i.e., the string True or False) as its only entry.

A value of true implies that all subnets, including local and secondary copies of subnets, are located

in partition :zognet.
4.

A value of false implies that local subnets will be in partition :local, and secondary subnets will be

stored in partition :second. All others will still reside in partition :zognet or in partition :primary, If it

SFILE PAGE 4

"exists.

1.7. :zognet>help.frame

"Help.Frame specifies the frame to be displayed in the other window whenever the "help" global pad

is selected. It's default is Help1.

2. ZOG's Output Files
ZOG's output files are used to record information on disk as an aid in trouble-shooting or

debugging the system.

- :zog>log>zog.log<n>

* :zog>Iug>exception log

2.1. :zog>log>zog.log<n>

This set of files (i.e., zog.log, zog.logl, zog.log2, zog.log3) keep a four-deep log of all the user

display messages displayed during a ZOG run. :zog>log>zog.log is the current log file, the remaining

zog.log<n> files are the logs of the last, last but one, and last but two ZOG runs, respectively. In

addition, login/initialization time is recorded, as is logout/ending time. Also, if ZOG aborts

abnormally, the Pascal stack dump information is also recorded in zog log.

These files are created and maintained by procedures in Module ZLogFile.

2.2. :zog>log>exc eption.log

Occasionally ZOG may abort due to an uncaught Pascal-generated exception, such as a string too

long exception. Normal procedure on the PERQ is for the running program to abort, and a stack

dump of the Pascal procedures which were invoked when the exception was generated to be

displayed on the screen. In ZOG, however, there is an All exception handler to catch these

. exceptions. The purpose of this handler is twofold: to record the exception-generated stack dump in

- - the file :zog>log>exception.log (and in :zog>log>zog.log); and to exit ZOG "gracefully", i.e., in a

* controlled fashion.

"This file is created, or appended to, via Procedure ZOGDurnp in Module ZDump.

g1

| ZOG Modules

11

,°

I

!

,," M E PAGE I

Table of Contents
"1. ZOG System Modules 1

1.1, Basic System 1
1.11, Module ZBack 1
1.1.2. Program ZOG 1
1.1.3. Module ZOGVersion 2
1.1.4, Module ZParse 2
1.1.5. Module ZSel 2

1.2. Initialization and Exiting 3
1.2.1. Module ZlnitExit: 3
1.2.2. ZInitOthers 3
1.2.3. ZLogin 3

1.3. System Level Libraries 3
1.3.1. BaseLib 4
1.3.2. FsString 6
1.3.3. NotDels 7
1.3.4. Netlnsert 7
1.3.5. NetLib 8
1.3.6. NetMakeDel 8
1.3.7. NetOption 101.3.8. NetPERQCodes

10
1.3.9. NetStack 10
1.3. i0. NetString 11

1.4. Net interface module 12
1.4.1. Module NetHandl 12

1.5. Screen Interface 12
1.5.1. Module IncDisp 12
1.5.2. ZCanvas 13
1.5.3. Module ZCanvUtils 141.5.4. Module ZDisplay 14

1.5.5. Module ZIO 15
1.5.6. Module ZUser 15
1.5.7. Module ZWind 15

1.6. Action Processing Modules 15
1.6.1. ZAAction 16
1.6.2. Module ZAction: 16
1.6.3. Module ZActUtils: 16
1.6.4. ZBAction 17
1.6.5. ZDAction 17
1.6.6. ZEAction 18

1.7. Exernal Device and Utility I/O 18
1.7.1. UEI 18
1.7.2. ZBHIO 19
1.7.3. ZVIdeo 19

1.8. Polling Routines for Statistics or AirPlan 19
1.9. Statistics Gathering 19
1.10. Miscellaneous Utilities 19

2. ZOG Netserver Modules 19
2.1. ElOTypes 20
2.2. ZAccessProcs 20

- .-. .

" ZOG M_ • ES PAGE II --

2.2.1. Frame Access Routines 21
2.2.2. Frame Modification Routines. 39
2.2.3. Subnet Access Routines. 40
2.2.4. Utility Routines 41
2.2.5. Zog and Agent, Login/Logout Routines 41

2.3. NetServ 42
2.3.1. Frame Access Routines 42
2.3.2. Frame Modification Routines 42
2.3.3. Subnet Access Routines 43
2.3.4. Utility routines 43
2.3.5. Initialization routine 45

2.4. ZNet 45
2.4.1. Frame Access Routines 46
2.4.2. Frame Modification Routines 46
2.4.3. Subnet Access Routines 46

2.5. ZEInt 47
2.6. ZNetServer 47

2.6.1. Frame Access Routines 48
2.6.2. Frame Modification Routines 48
2.6.3, Subnet Access Routines 48

2.7. ZNetProcs 49
2.7.1. Frame Access Routines 49
2.7.2. Frame Modification Routines 50
2.7.3. Subnet Access Routirnes 50

2.8. ZOGMsg 50
2.8.1. Send Routines 51
2.8.2. Receive Routines 52
2.8.3. Message verification and handling routines 52
2.8.4. ZOGMsg Utilities 52
2.8.5. EtherNet Handler States 53

2.9. ZOGMsgDefs 53
2.9.1. Ethernet Request packet records 54 -.

2.10. ZOGNetServer 56
2.10.1. Subnet Locating Routines 56
2.10.2. Subnet Maintenance Routines 56
2.10.3. Server Routines 57
2.10.4. ZogNetServer Utility Routines 57

3. ZOG Editor Modules 57
3.1. ZED Modules 57
3.2. SLED Modules 58

4. ZOG Agents Modules 58
4.1. Planning and Evaluation (Task Management) Agents 58
4.2. Backup and Transport Agents 58
4.3. ZOG Special function Agents 59

4.3.1. Writing frames in a form suitable for printing 59
4.3.2. Saving old versions of frames 59
4.3.3. Utilities 59 -

4.3.4. Fonts and Graphics 59
4.3.5. Creating an index or directory of subnets 59

4.4. Subnet Repair and Updating Agents 59

•- . ..' , , : . • , ., .. .: - - . ., .- - . .. , . . -

i" mom=,L • PAGE III.-J

* 4.5. SORM and Weapons Elevator Agents 60
4.5.1. AgDgm : Writes out a chapter of diagrams 60
4.5.2. AgGAPL : Prints a tree of frames in scribe compatable format 60
4.5.3. AgMgmt: Produces a listing of all the frames title text 600 4.5.4. AgOpr Prints a tree of fraems in depth first search order 60
4.5.5. AgOrg Prints lists of responsibilities of each billet 60
4.5.6. AgTask : Prints out option text for each frame that has options 60
4.5.7. AgText: Prints out the frame text on each frame visited 61
4.5.8. AgThy: Prints out 4heory section of Weapons Elevator Manual 61
4.5.9. AgTrb: Prints out troubleshooting section of Weapons Elevator Manual 61
4.5.10. AuxOrg : Prints out the appendixs for the ship's SORM 61

4.6. Agents Libraries 61
4,7. Shell Utility Modules 62
4.8. Agent/Shell Utility Invocation Modules 62

5. ZOG AirPlan Modules 63
6. PERO Operating System Modules Imported by ZOG 63

"PAGE 1

The ZOG Code Modules are listed below by functional category.

The following options name modules and point to frames which list the exported

procedures/functions contained in those modules.

* ZOG System Modules

" ZOG NetServer Modules

0 ZOG Editor Modules

* ZOG Agents Modules

* ZOG AirPlan Modules

* PERO Oplraling System Modules IMPORTed by ZO0

1. ZOG System Modules

1.1. Basic System

1.1.1. Mocule ZBack

a liThis module maintains the ZOG system backup list oi frames visited, which is used in implementing

the back, next, prev and ret global pads.
InitBack Initialize Backup List Structure (and ZMarkI Module)

SavBack Push currently displayed frame and selection on backup stack (ZBack.lnsBack)

3 GoBack Pop top frame on backup stark (ZBack.DelBack, ErBack)

XPoplBack Pop up one level on the backup stack (ZBack.DelBack, ErBack)

XPopBack Pop backup stack to given frame id

XCIrBack Clear entire backup list

XGoBack Pop top frame on backup list, and display it- "'ack"

XRetBack Display pseudo-frame listing frames on backup list - "ret"

XNexf Pop top frame on backup list, and display frame id pointed to by next option, if it
exists. "next"

1.1.2. Program ZOG

The Main ZOG Program. Consists of a Main routine which calls Procedure ZOGMain, the "real"

main ZOG Procedure. This module also contains the upper-level exception handlers and the Exiting

and Logging-in invoking prucedures.
. SuspZOG Suspend ZOG execution, saving current state

,,G QU~i PAGE 2

ResZOG Resume normal ZOG execution from saved state

ReLogZOG Determine If user "really" wants to log off from ZOG

RelnitZOG Determine if user "really" wants to exit ZOG. Calls ZlnitExit.ExItZOG to perform
controlled shutdown.

ZOGMain Main ZOG loop. Calls initialization routine, then loops on character input,
character processing sequence.

1.1.3. Module ZOGVersion

This module supplies the current ZOG version number to the rest of ZOG.

1.1.4. Modulo ZParse

Contains some elementary parsing routines for the original ZOG command line invocation from the

shell. Also used within ZOG for command line parsing. --
InitParse If ZOG is declared (in user's profile file) to be the current shell, then get any

switches passed to ZOG via GetArg, below

ProSwitches Process user-input switches from command line

GetArg Recursively obtains switches from command line; if specified argument is
missing, will prompt for missing argument with caller supplied string

GetOptArg Recursively obtains switches from command line; if specified argument is
missing, use passed default value

GetRemArg Get remaining arguements from the user command line

1.1.5. Module ZSel

Module ZSel contains 5 exported routines necessary to do selection processing. These are:
Procedure GetSel given a selection character, this routine returns a pointer to the corresponding

selection, if it exists

Procedure EvalSel given a pointer to a selection on a frame, this routine will either go to the frame
linked to the selection (and execute that frame's action), do the selection action, if
there is one, or initiate top-down frame creation from the selection.

Procedure OutS given a character input by the user, this routine will interpret it as an action string
or as a selection to be processed.

Procedure ReturnSel
returns the selection character or control character input by the user.

.4 Function GTchSeI returns pointer to selection selected by mouse.

-..

ZOGMODULF& PAGE 3

1.2. Initialization and Exiting

1.2.1. Module ZInitExit:
InitZOG Initialize all the variables and pointers in all of the modules that make up ZOG.

ExitZOG Clean up variables in preparation to exit ZOG.

LogOffZOG Log off one user and log in another.

1.2.2. ZlnitOthers

This Module has one procedure which simply calls the remaining initialization procedures, in order,

for the rest of the ZOG sytem modules. This procedure could not be a part of ZlnitExit due to the

PERO Pascal compiler restriction on the number of imports allowed. Hence, ZlnitExit InitZOG had to

call ZlnitOthers InitOthers, where ZlnitOthers imports the rest of the system modules needed for

"initialization.
Procedure InitOthers

exported

1.2.3. ZLogin

ZLogin is the login program. It is called at both boot time and anytime a Login command is

executed.
Procedure DoZOGLogln

exported

1.3. System Level Libraries

* BaseUb

* FsString

* NetDefs

* Netlnsert

* NetLib

0 NetMakeDel

0 NetOption

* NePEROCodes

* NetStack

* NetStrng

=GMODULES PAGE 4

1.3.1. BaseLib

BaseLib is a collection of routines that are needed by the basic ZOG system and the ZOG Net

Server proces&: It's purpose is to avoid duplicating code for both processes.

1 3.1.1 Initialization routines
"Procedure IniBaseLib

Initialize internal variables and pointers

Procedure IniFHP Initialize the frame header record structure

"1.3.1.2 Test Functions

Function TIsUc Test to see if a character is uppe case

Function TIsLc Test to see if a character is lower case

Function TisAIph Test to see if a character is Alphanumeric

Function TIsDi Test to see if a character is a digit

Function TOwnF Test to sec, J % given user Id is one of the owners of a frame

Function TSidValid Test to see if a subnet Id is valid

Function TProtValid
Test to see if given protection is valid

Function TUsrldValid
Test to see if a given user Id is valid

1.3.1.3 Convert routines
Procedure CvlntStr

Convert an integer to a string

Function CvStrlnt Convert a string to an integer

Procedure CvLongStr
Convert a long integer to a sting

Function CvStrLong
* Convert a string to a long integer

FunctionCvMonStrlnt
Convert a string to a valid month Integer

Function CvDatStrlnt
_* Convert a date string into internal integer format

'• -i-'"Function CvTimStrlnt
FntnCirConvert a time in string format into a long integer

I.

."L. *.

ZQQ MQDULA PAGE 5

1.3.1.4 Get Functions
Procedure GTimStr

Get the time of day in HH:MM:SS format

Function GTimint Get time in milliseconds since midnight

Procedure GDatStr
Get today's date in DD MM YY format

Function GDatlnt Get today's date in internal integer format

Function GEqFs15P
Get an entry on a frame string15 linked list matching a given string

1.3.1.5 Make-Delete procedures
Procedure SavFs 15P

Put a frame string!5 record structure on the save list

Procedure SavFHP Put a frame Header record structure on the save list

Procedure RelFsl5P
Release a frame string 15 record from uss

Procedure RelFH Release contents of a frame header record structure

Procedure CIrFHP Clear contents of a frame header record structure

Function CrFs-15P Create a frame string 15 record structure

Function CrFHP Create a frame header record structure

Procedure DelFs 151
Delete a frame string15 record structure from a frame string15 record linked list

Procedure InsbFs 15!
Insert a frame string15 record a the beginning of a frame string15 linked list

Procedure InseFs 151
Insert a frame string15 record at the end of a frame string15 linked list

1.3.1.6 Miscellaneous procedures
Procedure AppStrFile

Append a string to the end of a file

Function ParseLine
Get a line of info from an internal frame buffer that contains a frame in external bh
frame storage format

Procedure ParseFH
Transforms the external bh form of a frame header into the internal frame record
structure during the frame read process

Z913 "•" LES PAGE 41

"1.3.2. FsString

Module FsString impliments the frame strinig manipulation routines for the ZOG system.Frame

strings are record structures with three elements. The first element is a string[80] followed by two

pointers. The pointers allow the frame strings to be put on doubly linked lists. All of the PERQ Pascal

string manipulation routines in PERQ.String have been duplicated for the frame strings in this module.

1.3.2.1 Length and Write routines
Function Fs - Length

Get the length of a frame string

Function Fs - Lines
Count the number of lines in a frame string

Procedure WrFsFlle
Write a frame string to a file

Procedure WrFsXFile
Write a frame string to a file beginning with the ith character; where i is given in
the call

- Procedure WrFs Write a frame string to the standard output

* 1.3.2.2 Convert routines

Procedure CvFsStr Convert a frame string to a Pascal character string

Function CvStrFs Convert a character string into a frame string

" ""Procedure Fs - ConvUpper
Convert a frame string to all upper case letters

Procedure Fs - ConvLower

"Convert a frame string to all lower case letters

1.3.2.3 Basic String routines
Procedure Fs - Adjust

Change the dynamic length of a frame string

Function Fs - Concat
Contatenate two frame strings together

Function Fs - SubStr
"Refurn a subportion of a frame string as a character string

Procedure Fs - Delete
_0 Remove characters from a frame string

Procedure Fs- Insert
Insert a string into a frame string

41

,Q MLES PAGE 7

1.3.2.4 Position and Append routines
Function Fs- Pos Find the position of a pattern in a given frame string

Function Fs - PosC
find the postion of a char in a given frame string

Function Fs - RevPosC
Find the position of the last occurance of a pattern in a given frame string

. Procedure Fs - AppendString
Append one frame string to the end of another frmae string

Procedure Fs - CAppend
Append a character to the end of a frame string

1.3.3. NetDefs

Module NetDefs contains all of the basic ZOG system definitions. These include all of the signal

constants, basic type declarations, control character constants, declaration of protection types and

various other constant declarations that are used throughout ZOG. NetDefs does not export any

procedures.

1.3.4. Netlnsert

Module Netinsert impliments all the list handling routines for frame string pointer types(Fsl), frame

string 15 pointer types (Fsl 5i) and selection list pointer types (Sell). Each routine inserts a record into

a list of records either at the beginning (Insb), prior to the record already on the list (Insp), after a

record already on the list (Insa) or at the end of the list (Inse).

1.3.4.1 Insert at the beinning of a list utilities
Procedure InsbFsl Insert a frame string record at the beginning of a f frame string record linked list

Procedure Insbell Insert a selection record at the beginning of a selection record linked list

1.3.4.2 Insert prior to an object on a list utilities
Procedure lnspFs 151

Insert a hame string15 record prior to a given frame string record that Is on a
IAnked list of frame string 15 records

Procedure Ins pFsl Insert a frame string record prior to a given frame string record that is on a linked
list of frame string records

Procedure InspSeII
Insert a selection ecord prior to a given selection recor that is on a linked list of
selection records

ts7

_ZOG MODULES PAGES

1.3.4.3 Insert after an object on a list utilities
Procedure InsaFs 151

Insert a frame string15 record after a given frame string15 record that is on a
-- -" linked list of frame string15 records

Procedure InsaFsl Insert a frame string record after a given frame string record that is on a linked list
of frame string records

Procedure InsaSell
Insert a selection record after a given selection iecord that is on a linked list of
selection records

S* " 1.3.4,4 Insert at the end of a list utilities
Procedure InseFsl Insert a frame string record at the end of a frame string recordlinked list

Procedure InseSell
Insert a selection record at the end of a selection record linked list

1.3.5. NetLib

Module NetLib is effectively NetHandl, Netlnsert, NetMakeDel, NetOption, NetStack and NetString. It

is still used to keep older programs and modules compatible with the new division and to allow users

to import only one module instead of six.

1.3.6. NetMakeDel

Module NetMakeDel impliments all the routines that make and delete records and save the records

foi future use when needed. This is basically a memory manager for frame string records, frame

string 15 records and selection records.

1.3.6.1 Initialization procedures
Procedure IniNetMakeDe

Initialize variables and pointers in NetMakeDel

Procedure IniFBody
Initialize only the body of frame record (not the frame header)

* Procedure IniFP Initialize the entire frame record structure

1.3.6.2 Save a record utilities
Procedure SavFsP Save a frame string record on a save list. This routine puts an unused frame string

record on the save frame string record linked list

Procedure SavSelP
Save a frame selection record on the save list

Procedure SavFP Save a frame record structure on the save list

S.. ! i; :: i i : i:: : ::

" ZOG M E PAGE 9

1.3.6.3 Release memory utilities
Procedure Re/FsP Release a frame string linked list to the save list. This routine will put every frame

string record pointed to by a frame string pointer on the save frame string record
"". linked list.

Procedure RelSeiP Put a linked list of selection record structures on the save list

Procedure ReIFBody
Release the contents of the body of a frame record structure. This routine will
release the entire substructure of a frame except for the !rame header information.

Procedure ReIF Release the entire contents of a frame record. This routine will release the entire
contents of a frame record structure to the various save record linked lists that
exist.

S-Procedure ReIFHP Release a frame header pointer and put it on the free list

Procedure ReIFP Release a linked list of frame pointers and put it on the save list.

1.3.6.4 Clear the contents of a record utilities
Procedure CIrFBody

Clear only the body of the frame record (Don't change header). This routine will
release the entire substructure of a frame record structure to the various save lists
and initialize all the pointers to nil except for the frame header information.

Procedure CIrFP Clear the entire frame record (release all substructure)

1.3.6.5 Create utilities

The create utilities will attempt to get the appropriate record structure from the appropriate save list.

If the save list is empty then a new structure is created dynamically.
S"Function CrFsP Create a new frame string record sircture

Function CrFP Create a new frame record structure

Function CrSeIF Create a new selection record structure

"1.3.6.6 Delete utilities

The delete utilities will delete the appropriate record from the linked list t that is currently a part of. If

the record is the top of the linked list the second record will automatically be made the top of the list.
Procedure De/Fsl Delete a frame string record from a linked list

Procedure DelSell Delete a selection record from a selection record linked list

Procedure SetMrkSel
Set the mark (space or minus) in a selection

* i " "• -i . " ". ." • - - , ."'., . - - " " "•

ZOG MODULES PAGE 10

"1.3.7. NetOption

Module NetCption impliments the routines that manipulate options or local pads within a frame.

They include finding, inserting and creating.
Function GOptF Get an option with a given selection character from a frames option list

Procedure InsOptF Insert a option in the option list of a frame

Function GPadF Get a pad with a given selection character from a frame's local pad list

Procedure InsPadF
Insert a selection in the pad list of a frame

Function CvStrSelTxt
"Convert a pascal string to selection text

Function CrOptF Create a new option in the frame

Function CrPadF Create a new pad in the frame

Function GNewOpt
Find where next available option on a frame should go

*Q 1.3.8. NetPEROCodes

1.3.9. NetStack

Module NetStack impliments the stack operations push, pop and read for ZOG frames. A frame

stack is a mechanism to remember what frames have been visited in the past and allow them to be

visited again. It is basically a linkeked list uf frame string 15 records that hold the frame id of all frames

"pushed" on the stack.
Procedure InitFstk Initialize fields of frame buffer stack Fstk

Procedure IniNetStack
Initialize variables and pointers in the module NetStack

Procedure RdFstk Read a frame from the net file into the top of Lihe frame buffer stack

Procedure PshFstk Preserve the current top frame in a frame buffer stack

* Procedure PopFstk
Restore last pi'eserved framrn to the top of frame stack Fstk

" Procedure RdfstkX Read a frame from the rt file into the frame buffer stack X

'. Procedure PshFstkX

* Preserve the current top frame in a frame buffer stack X

Procedure PopFstkX
Restore last preserved frame to the top of frame stack Fstk X

, M...QUL, PAGE 1I

1.3.10. NetString

Module NetString handles all of the string handling routines for the ZOG system.

1.3.10.1 Convert utilities

"Function CvUcLc Convert a character to a lower case alphabetic

F'inction CvLcUc Convert a character to an upper case alphabetic

Procedure ConvLower
Cunvert a string to all lower case characters

Function AnyPos Find the pition of a mask in a string

Function Narrow Converta long integer to a normal integer

Function Widen Convert a integer to a long integer

1.3.10.2 Character string manipulation
Procedure Strip Strip carrage returns, line feeds and blanks from the front and back of a Pascal

string

1.3.10.3 Frame string utilities
Function TFsNull Test to see if a frame string ponter is nil

Function GFs15P Get a frame string15 pointer that matches a mask

1.3.10.4 String equality utilities
Function TEqStrCase

Test to see if two strings are equal (case sensitive)

Function TEqStrSub
Test to see if one string is a substring of another

1.3.10.5 String-long conversion
Function RoundLong

Convert a real number into a long integer rounded to the nearest whole number

Function TruncLong
r Convert a real number to a long integer truncated to the nearest whole number

*° Function FloatLong
Convert a long integer to a real number

Procedure CvRealStr
Convert a real number into a character string

Function CvStrReal
Convert string to a real number

-.,

2- " ' '- '- "", " ' ' " " " " " " "," -' ' " • "o -" - k' •'"i•;• -• ". "- -" •"- - -" . ' .- " .-', ," , - . . '"- -

ZOQ" M.' ZO PAGE 12

.1.3. 10.6 Time and date
"Procedure CvTimlntStr

Convert a time integer in milliseconds since midnight into a pascal string in the
"-" form HH:MM:SS

Procedure CvMonlntStr
Convert a month integer to a pascal string

Procedure CvDatlntStr
Convert a date integer to a pascal string of the form DD MM YY

1.3.10.7 General utilities
Function TFidValid Test to see if a frame id is valid

SProcedure PrsFid Parse a frame id into its subnet name and relative frame number

1.4. Net interface module

1.4.1. Module NetHandl

Provides upper-level procedures for accessing the NetServer modules. The NetServer modules

0 provide read and write access to all 'he subnets and frames within the network of PERQs linked

together with the EtherNet. Since that access is at a lower level than the procedures contained

herein, the details of local versus remote access are completely hidden from the user or agent writer.

1.5. Scieen ;nterface

1.5.1. Module lncDisp

Module IncDisp is used for monitoring the state of a frame designated to be automatically updated-

"as it is changed, presumably by some remote user(s). When a frame is re-displayed via this

. mechanism, the changes that have been made are highlighted in reverse video. The polling for this'

mechanism which determines when a frame re-display might be necessary is handled in ZSel.Return

and the ZCanvas routine RdTKeyZOG.
* InitlncDisp Create scratch record and initialize incremental display (local boolean,

IncDispSig) to off.

SetlncDisp Givern an update timing interval, set local variable JncDispTime and IncDispSig
accordingly, to turn incremental display on or off, as requested.

UpdatelncDisp Redisplay frame with highlighted changes if frame has changed and if display
timing interval has expired.

SavlncDisp Save the frame ID of the frame displayed in the current window and mark It as not
having changed.

0

"-.-".-. . , - . .- -:

1 - 0. -- -- T -- - --, :..T U '~ .

ZOG M•QD PAGE 13

1.5.2. ZCanvas

ZCanvas provides the lowest level screen display routines,

1.5.2.1 Canvas (window) and pointer routines

InitZCanvas initialize the all canvas variabies

ChangeCanvas Go to another window

TitleCanvas Insert Title string at top of current window

ClearCanvas Clear the current window ,-

SetCanvas Read in internal window variables

ResetCanvas Clear the window and reset the screen

SetCanvPtr Select an image for the mouse pointer

SetCanvFunc Select black/white background

SetPtrCh Move mouse pointer and alternate cursor, if applicable.

SetPosCh Set the position of the mouse pointer

GetPosCh Get the current position of the mouse pointer

1.5.2.2 cursor controlling routines
CursorOn Turn on the (character input, i.e., underscore) cursor

CursorOff Turn off the cursor

isCursorOn Return the current state of the cursor

SetAltCursor Select an image for the alternate cursor

DispAitCursor Display a new alternate cursor at specified locatian

IsAltCursor Return the current state of the alternate cursor

LineCanvas Draw a line between specified points

BoxCanvas Draw a box with specified corners

SetCursorCh Set the cursor character

1.5.2.3 Character (and mouse) Input and Output
Rd[T]Canvas Get next character/mouse Input from user.

Rd['TKeyEv Get next character input; stay in current window

Rd[I]KeyZOG Get next character-input; can change windows

RdPTKbd Get a character from keyboard . .,

RdKbdCond Return character or null

RdCanv Detect input event and return it in a canvEv record

""-'G ,.ODU PAGE 14

IsMouseEv Return true if Canvas event was motise button click

SetChFunc Select Replace, OR, XOR, etc. character display function

GetChFunc Return the current character display function

PutCh Output a character to screen and external terminal

PutStr Output a string

PutStrLn Output a string followed by a cr/If

PutSubStr Output a substring

BEEPCanvas Cause the terminal speaker to emit a short "beep"

1.5.3. Module ZCanvUtils

SetZOGCanvas Initialize 5 ZOG Frame Canvases and record structures

lniCanvPtr Read in Mouse pointer images from :zognet>zog.animate

CharToAbs Convert normal x-y character coordinates to screen pixel (absolute) coordinates

AbsToChar Convert pixel (absolute) coordinate points to character x-y cordinates, In the
proper window

"ScreenLine Draw a line on screen connecting two absolute coordinates

- DrawBox Draw a box on screen with opposite corners given in absolute (pixel) coordinates

1.5.4. Module ZDisplay

The ZDisplay provides complex frame and window display utilities.
Clear Clear the current window

DspPos Position the cursor to specified location in the frame display

DspEnd Position the cursor to (UsrDispLine,1)

CIrEOLn Clear from current position Zo end-of-line

CirLine Clear the entire current line

DrpF Clear the current window and display specified frame

DspFl 1 Display specified frame without clearing

DspSelF Display Selection records

DspLPads Display Local Pads records

DGPaods Display Global Pads from the specified GPads frame

DspFsP Display a Frame String record (i.e., item text)

DspStpr Mark the selection with an asterisk

Dsp(•xt Display a context string ('edit','second',etc.) to the left of the frame id (upper RH
comer)

* -
.• - - . .

ZQG MODULES PAGE 15

1.5.5. Module ZIO

The ZIO module controls message display on the user display line of frame windows, and message

handling to ewternal devices via the RS.232 port.

1.5.6. Module ZUser

The ZUser module contains procedures which control the messages sent to the User Display

Window, and the windows themselves.
WrUsrDsp Write a single character to the User Display Window.

ClrUsrDsp Clear the User Display Line and Window, clearing all the user display data
structures.

DspUsrDsp Change windows to the Full Screen User Display window, and display the last
screen-full of error messages.

DspF(1srDsp Display the last User Display Window-full of (error) messages in the (small) User
Display Window.

InitUser Allocate memory for user display routines

InrtUsrDsp Initialize all the variables for the User Display

1.5.7. Module ZWind

The ZWind Module performs the task of managing the ZOG frames in their separate windows with

the following EXPORTed procedures.
XChange Change current window (to the other window) (taw action)

SetWind Set the name of the frame, global pads frame and the selection character used to
get there into current window record

DspWind (Re)Display the frame in the current window; this is also used to leave the full-
screen user display

RdFPWind Read a frame into the current window frame record; in general, a backup stack
entry should be pushed before this is called

Opn Wind Open the frame in the current window (lock the record and read it in) (presumably

for subsequent modification)

IriitfWind initialize the vatiables in ZWind

Re/nitiWind Reinitialize window records for newly logged-in user

1.6. Action Processing Modules

4..%

Z"A MaRpI PAGE 16

1.6.1. ZAActiorn

1.6.1.1 Window Utilities
SetUserLine Set the User Display line number

': -:ExpandBig Expand the current frame to a big Frame

ShrinkBig Change the current big frame to a normal two window display

DispFr Redisplay frame in current window

1.6.1.2 Subnet Utilities
TopOtSubnet Go to the top frame in the current subnet

SetlnitFr Set the name stored in top.frame. Top.frame used to be the t top frame displayed

at login

SetFrFile Write a frameid to a specified file

GoToFrame go to a specified frame

TopFrOfNet Go to the frame listed in top.frame

* Pop Pop a frame from the current windows backup stack

Cnt!ASel main selection routine for processing tA actions

1.6.2. Module ZAction:
InitAction Initializes data structures for Control-D actions and for the Video disk modules

XAction Causes the given action command to be executed by dispatching It to the
appropriate Module Procedure

ProActStr Parses the given string into action commands, then passes the command to
XAction for execution

ProAction Removes individual strings from an action string record, then passes these to
ProActStr for eventual execution

GAction Given a control character input by the user, obtains the rest of the action
command and optional action arguments, then causes them to be executed

* 1.6.3. Module ZActUtils:

* This module contains a number of utilities for the action processing modules.
CvFid Returns valid frame Id from userInput string

"' CvSid Returns valid Subnet Id from user-input string

CvFile Returns a filename from user-input string

"GFidUsr Issues prompt to user for frame id, and returns frame Id

GSidUsr Issues prompt to user for Subnet Id, and returns subnet Id

GFileUsr Issues prompt to user for filename, and returns it

2.* -..-

e..&ZP ~ .. U .L*L-

ZQ- MO.U PAGE 17

TExitAction Returns true if current frame has an exit action

" GetAction Returns action string record from selection pointer

DoAction Causes the given action string to be executed

1.6.4. ZBAction

* Comment: Writes the contents of a frame comment area to the user display

9 CIsFile : Close a file

e PosCursor: Position the cursor to a specified row and column

* OpnlnFile: Open a file for input (read only)

- OpnOutFile : Open a file for output (write only)

* PrintChar: Print a char in front of a given option

9 ChangeTerm : Change the type of terminal that ZOG will send its output to

* CntlBSel : main routine to process tB actions

1.6.5. ZDAction

U 1.6.5.1 InitDAct : Initialize the variable for ZDaction

1.6.5.2 A - I command procedures: procedures for ID actions
AddOwner Add an owner to the current frame

| ClearSn Clear a given subnet

CrFrame Create a new frame with a given frameid

, CrSubnet Create a new subnet

EditFrame Invoke the Zog editor (Zed)

EraseFrame Erase a given frame

FProtect Set the protection for a frame

Info Write the frame header info to the user display and highlight any differences
between the current frame and the old frame

1.6.5.3 J - Z commmand procedures procedure for tD actions

* Play: Play back a script

a PbRecord : Record a script

* ShowStats : Display the status of a given perq in the user display

:...., .•....... ... • -•. -.. .. '.- .• - , . .: - --.... . •• - . . . - --.. --. . -..

PAGE 18

" ShowAIIStats :Display the status of all the Perqs in the user display

* SlotEditFrame: Invoke the slot editor (Sled)

a WrFrBh Write a frame in BH format

- WrSNetBh : Write a subnet in BH format

1.6.5.4 CntlDSel main routine to process tD actions

1.6.6. ZEAction

* PrintFile: Send a file to the print server

* ZScreenDump : Send a copy of the current screen image to the print server

* CntlESel : main routine to process tE actions

1.7. Exernal Device and Utility I/0

1.7.1. UEI

1.7.1.1 Utilities

* UElActivate: Activate the Universal External Interface controller

"* UEIDeActivate DeActivate the Universal External Interface controller

* UEIEcho Display/Don't display command

- UEIBeginStack : Clear the video stack

* UEIEndStack: Termainate the command stack

* UEIReset : Reset the Universal External Interface controller

1.7.1.2 Video commands

* Disk control commands

* Auxiliary commands

, Programming Commands

",•'•" "-,'~~~~~~~~~~..-- .. " :?:'-" .. •""'".....-.. "........... ,-............, .'.... .

b ZOG M01DULES PAGE 19

1.7.1.3 Utility commands

1.7.2. ZBHIO.

1.7.,. ZVldeo

1.8. Polling Routines for Statistics or AirPlan

* ZPolISnap

* ZPoll

* ZPollProc

* e ZPoIIAir

1.9. Statistics Gathering

* StatsDefs

* StatsLib

* ZPutStats

* ZSnapShot

9 ZStats

1. 10. Miscellaneous Utilities

9 ZDump

* ZError

* ZLogFile

* ZTrace

2. ZOG Netserver Modules
These modules provide access to subnets and frames anywhere within the ZOG net, i.e., on both

the local PERQ and on any other PERQ linked to the local PERQ by the EtherNet. They are accessed

from the basic ZOG systerr via procedures in module NetHandl, which accesses the rest through

ZAccessProcs.

* E10Types

L.

Z -MOULES PAGE 20

0 ZAccessProcs

0 NetServ

* met

i ZEInt

"0 ZNetServer

* ZNetProcs

, ZOGM3g

- ZOGMegDefs

0 ZOGNetServer

2.1. E1OTypes

This module contains all valid Ethernet type fields used by PERQ software. This file is meant to be

used as an include file.

2.2. ZAccessProcs

Most ZAccessProcs routines provide an interface between higher level routines (i.e. those In

NetHandl) which make requests to access or modify a frame or subnet, and lower level routines (i.e.

ý%. those in NetServ and ZNet) which perform the actual accessing of the frames and subnets. The other

routines in ZAccessProcs, the login/logout and utility routines, are themselves low level routines.

All routines in Module ZAccessProcs return an integer value declared as type GeneralReturn In

Module NetDefs. This integer value represents either Success, or a value for some type of failure

signal. These signals and the integer value for success can be found declared as constants in Module

NetDefs.

The routines in Module ZAccessProcs have been broken into five categories to coincide with their

calling routines in Module NetHandl:

9 Frame Access Routines

0 Frame Modification Routines

0 Subnet Access Routines

• Utility Routines

.-. .. .- > -.-. ..- .-. ,S. .- .••£ -.. . .- " - .. . ',• .,." .- .. -. ,.-..... • .. • . ' -

Q PAGE21

"" Zog and Agent, Login/Logout Routines

2.2.1. Frame. Access Routines

These routines provide an interface between higher level and lower level frame access (view,

create, delete) routines. Although doing very different things, they use very much the same method in

locating a subnet or frame. This is detailed in Functions ReadFrame, ReadHeader, OpenFrame, and

CloseFrame. The functions call the appropriate functions in either Module NetServ, for local frames

and subnets, or routines in Module ZNet for accessing frames and subnets on a remote machine.

These Functions will return success to the calling routine in Module NetHandl if successful.

2.2.1.1 Function ReadFrame

ReadFrame will read a frame locally if possible. Otherwise, it scans the local server database to find

any primary or secondary node which is up, and sends a request to that node. If none are listed as up

in the local server database, it probes each of the primary and secondary nodes to find one which is

up. If it finds one, the server data base is updated and the request is forwarded. The routine returns

success if it is able to read the frame specified. Otherwise, it returns any of a number of failure

signals. it proceeds as follows:

2.2.1.1.1 Calls Function ZAccessProcs.CheckServer to make sure the request for a frame

comes from a logged in user.

2.2.1.1.2 Calls Function ZogNetServer.GetSnRecord which hashes into the local subnet

database for the record. If the record is not represented locally, the routine

searches in the subnet index of the master node. If th. record Is found, It is

added to the local subnet database. An attempt Is made to open the file If it Is on

the local disk.

2.2.1.1.3 If the Current node has the primary copy of this subnet, then read the frame thru

a call to Function NetServ.RdF-.

* If the Primary copy of the subnet is on a remote machine, call Function ZNet.ZReadFrame
"Wo read the frame from a remote machine. If ZReadFrame returns unsuccessfully, call
Function ZogNetServer.Probe to see if the Primary node is actually up. If successful, call
Function ZNet.ZReadFrame again, to read the frame from the remote machine.

o If there is no success reading from the primary node, ReadFrame next checks to see If
the current node has a secondary copy of the subnet. If it does, ReadFrame calls
Function NetServ.RdF- to read. Otherwise, It checks the remainder of the secondary
nodes in the same fashion as it did for the primary node, looking for one that is up, so that
a call to Function Znet.ZReadFrame can read the frame from a remote machine.

Z0' MO LE PAGE22

o In the event that the primary and secondary nodes are all not up, then ReadFrame returns
the signal . SigFrUnavailable.

"2.2.1.2 Call ZAccessProcs.ReadHeader

After initializing the global variables needed to access the network (and returning an error if

something was amiss), ReadHeader will attempt to locate the subnet that contains the frame. Then, it

will try to read the frame header:

2.2.1.2.1 If the subnet does not exist, return an error.

2.2.1.2.2 If the current machine contains the primary copy of the subnet, call

NetServ.RdFH - to obtain the header and exit

2.2.1.2.2.1 NetServ.RdFH-

* Test to see if the subnet exists on the local machine. If not, there is an inconsistency in
the subnet indexes. Return an error.

* *• Calculate the page number of the first frame. There are 10 pages/frame so this is easy.

1 ,o Turn off ethernet interrupts before reading from the disk.

o Read in the page header.

o Turn interrupts back on.

" If the first byte is null, the frame does not exist. Return an error.

o Parse the frame into the frame record.

o If the frame is protected, return an error.

* Return success.

2.2.1.2.3 If the remote host is listed as being 'up', call ZNet.ZReadHeader to read It from a

remote machine and exit If successful,

2.2.1.2.3.1 ZNet.ZReadHeader

Note: The following algorithm is repeated a maximum of 'MaxRetries' (3) times.

0 Recast the ZOG message buffers as ReadHeader message buffers.

* Load up the parameters of the message buffers.

i o Call ZOGMsg.SndRcvRecord to send the message over the Ethernet.

K f the returned status was not success, repeat

.Z.Q• MODULES PAGE 23

0 If the message buffer c.ntains an error, repeat.

& Call ZOGMsg.ReceiveBuffer to get the header page.

* Calls Function ZogMsg.ReceiveBuffer to get the frame body.

* if that failed, repeat the initial request.

2.2.1.2.3.1.1 Recast the ZOG message buffers as ReadHeader message buffers.

2.2.1.2.3.1.2 Load up the parameters of the message buffers.

2.2.1.2.3.1.3 Call ZOGMsg.SndRcvRecord to send the message over the Ethernet.

SndRcvRecord does a synchronous send/receive pair between two machines connected by the

- EtherNet. The routine sends a message across the EtherNet and waits (with a timeout) for a reply.

Errors are returned accordingly.

*, The messages generated by SndRcvRecord cause EtherNet exceptions to be raised on the local

(sending) machine and target (receiving) machine, and these then raise the 'ElOReceiveDone'

exception, locally and within ZOG. The local ElORecieveDone handler of SndRcvRecord handles the

acknowlegement and reply of the target machine to the local machine. The ElORecieveDone handler

i at the ZOG system (in Module Zog) level handles the receiving of the request of the sending machine

and processing it.

2.2.1.2.3.1.3.1 ZOG.ElOReceiveDone

The EtherNet exception handler in ZOG is invoked when a remote machine sends the current

machine a message. This exception handler contains nested handlers to protect ZOG from dying

when additional messages are received while ZOG is processing ethernet messages.

2.2.1.2.3.1.3.1.1 Change the mouse Image to the hollow arrow. This is purely cosmetic.
r'...

2.2.1.2.3.1.3.1.2 Call ZOGMsg.HandleMsg to get the message buffers. If an error occurs,

ignore the message. The other machine will resend It If it Is important

enough.

2.2.1.2.3.1.3.1.2.1 Function ZOGMsg.HandleMsg

"This is a boolean function that returns true if there is a valid ZOG request. The message is taken

from EtherNet packet form and put into a ZOG message record that must be handled. It returns false

for those messages not of the ZOG record protocol. It does the following:

e Check to see if there is a legal ZOG record message.

" MODE PAGE 24

* If the message received is a request for a probe, and machine names match, then send a
probe reply. Thus, the probe is handled right here and HandleMsg returns false.

, If the message is an acknowledgement then return a value of false. These are ignored at
this leve, to avoid infinite loops that can occur with two machines that get out of
synchronization and begin sending Ack messages back and forth.

* Otherwise, send an acknowledgement to the sending machine and transfer the received
"message from the buffer to a ZogMsgPTyp and return true.

2.2.1.2.3.1.3.1.3 Pass the message buffers to ZNetServer.ZNetServer for processing.

-. Module ZNetServer is the counterpart of Module NetHandl on the remote machine. It invokes the

local routines which will return the necessary data. It is simply a case statement which uses the input

message id to determine which routine should be called. In this example, it will call Procedure

ZNetServer.XZReadHeader.

2.2.1.2.3.1.3.1.3.1 Procedure ZNetServer.XZReadHeader.

*~• XZReadHeader is the equivalent, on the remote machine, to Procedure NetHandl.RdFH on the local

machine. Its method is very differnt from that of Procedure NetHandl.RdFH because of the fact that it

"must perform its task on a remote machine. Notice, however, that both call Procedure NetServ.RdFH.

to do the low level reading of the frame. It does the following:

2.2.1.2.3.1.3.1.3.1.1 Recasts variables local to the Procedure as ethernet request and

reply types.

"2.2.1.2.3.1.3.1.3.1.2 Calls Function ZNetProcs.ZReadHeader to load the header block

into the message buffer

ZNetProcs is the counterpart to ZAccessProcs and handles access on a remote machine. For

details on NetServ.RdFH. see p. 22.

* Verifies that the subnet exists, via a call to Function ZogNetServer.Chk. SnRecord.
ChkSnRecord is very similar to GetSnRecord, except that the subnet information passed
along with the request is assumed to be correct. This eliminates the need to request it
from the MasterNodes Subnet Index. So only the local subnet index needs to be

* "examined to make sure that the information is correct.

* * Otherwise call NetServ.RdFH - to load the buffer with the frame header block.

"22.1.4.3.1.3.1.3.1.3 Calls Function ZogMsg.SendRecord to send a reply to the sending

"machine.

* t!Sends a record to a remote machine and waits for an acknowledgement of receipt of the record.

" " ' " ' " " ° " '~~~~~~~~ .* "1""* ' -"- ..' - - .' - '-. -. ' . • . - -i, i . ' ' " - . . '

SZOG MQDULES PAGE 25

2.2.1.2.3.1.3.1.3.1.3.1 Sets addresses to be correct, in various records, so that the

record can be received on the remote machine.

2.2.1.2.3.1.3.1.3.1.3.2 Resend Loop

At this point the SendRecord enters a loop to send a request to the other machine, saying, "Well,

Go ahead", The loop will attempt to send the request a maximum of NumberResends times (5). To

send the request, first the ethernet interrupts are turned off. Next, a call is made to Procedure

EtherlO0O.ElOWlO which starts an EtherNet I/O operation and waits for it to complete. In this case,

information is being sent, so El WIO makes sure the information is sent over the EtherNet.

2.2.1.2.3.1.3.1.3.1.3.3 If an error is detected in sending the message, then exit

SendRecord. Otherwise, set the EtherNet Handier State to

indicate that the local machine is waitin, for the

acknowledgement from the remote machine (SWaitAck) and turn

on the EtherNet interrupts.

2.2.1.2.3.1.3.1..3.1.3.4 Got Acknowledgement Time-Controlled Loop

If the acknowledgement is received by the machine sending the message, an interrupt is generated,

causing an exception to be raised by the EtherNet MicroCode, thus invoking the local Handler

ElOReceiveDone. E10ReceiveDone sees that the EtherNet Handler State indicates that the local

machine is waiting for an acknowledgement (SwaitAck), and signals acknowledgement by assigning

tiie EtherNet Handler State to be that of 'Got the Acknowledgement' (SGotAck). If the

acknowledgement is received, exit SendRecord.

2.2.1.2.3.1.3.1.3.1.3.5 If after five attempts no acknowledgement Is received from the

remote machine, then exit SendRecord with an error.

2.2.1.2.3.1.3.1.3.1.4 Calls Function ZogMsg.SendBuffer to send the actual frame header.

2.2.1.2.3.1.3.1.3.1.4.1 If PgCni = 0 then exit SendBuffer successfully. The buffer Is

empty, and nothing is sent.

2.2.1.2.3.1.3.1.3.1.4.2 Set the Ethernet Handler State to Indicate that this machine would

like to go ahead and sernd a buffer (SWaitGo).

ZOG MODULES PAGE 26

2.2.1.2.3.1.3.1.3.1.4.3 Wait for Go Ahead Time-Controlled Loop

At this point a time controlled loop is entered, and its purpose is to wait for an interrupt which

indicates that' it is all right to send the first buffer. If the interrupt occurs, the local handler

ElOReceiveDone is invoked and acknowledgement is sent to the remote machine. If this

acknowledgement is sent successfully, the EtherNet Handler State is set to indicate 'Go Ahead and

Send the First Buffer' (SSendFirst), Otherwise, the handler is exited, leaving the Ethernet Handler

State in the original state.

2.2.1.2.3.1.3.1.3.1.4.4 Set up records with correct addresses to send first buffer.

2.2.1.2.3.1.3.1.3.1.4.5 Resend Loop

"" Assumes initially that only one page is being sent and puts that page into the buffer to be
"sent.

"* Checks to see if there is more than one page to transfer. If so, sets the buffer page size to
two and puts the second page in the buffer.

O
* Turns the Ethernet interrupts off and sends the Zo• Buffer Packet with a call to

Procedure Ether I010.E1OWIO. If sent successfully, sets the EtherNet Handler State to be
that of 'Waiting for a Buffer-Received Acknowledgement' (SWaitBufAck) and turns
Ethernet interrupts on. Otherwise, exits SendBuffer with an error.

2.2.1.2.3.1.3.1.3.1.4.6 Buffer Received Acknowledgement Time-Controlled Loop

At this point, again another time-controlled loop is entered. This time it is waiting for an interrupt

indicating that the buffer was sent. If that interrupt occurs, the local handler ElOReceiveDone is

invoked. It first examines the acknowledgement from the machine that received the buffer, for

correctness. If the acknowledgement is correct and if all the information has been sent, the EtherNet

Handler State is set to indicate that ali has been sent (SSentAll) and the handler is exited. Otherwise,

the handler attempts (only once) to send the next buffer itself, in the same fashion as SendBuffer.

2.2.1.2.3.1.3.1.3.1.4.7 If after five attempts the buffer has not been sent, then exit

SendBuffer with an error.

S...2.2.1.2.3.1.3.1.3.1.5 Calls Function ZogMsg.SendBuffer to send the actual frame body.

2.2.1.2.3.1.3.1.4 Clean up the mouse image and anything else If necessary.

9

ZOG jitQU.E PAGE 27

2.2.1.2.3.1.3.2 Function ZOGMsg.SndRcvRecord.

2.2.1.2.3.1 .4.2.1 Establishes a time deadline for receipt of the reply record from tile

target machine.

2.2.1.2.3.1.3.2.2 Sets up several records to be sent over the ethernet, by the local

machine. These are recast as ZogMsgPTyp's.

2.2.1.2.3.1.3.2.3 Resend Loop

At this point SndRcvRecord enters a loop to send the request for information in the target machine.

" The loop will attempt to send the request a maximum of NumberResends times (5). To send the

request, first the ethernet interrupts are turned off. Next, a call is made to Procedure

* EtherlOlO.E1OWIO which starts an EtherNet I/O operation and waits for it to complete. In this case,

information is being sent, so El OWIO makes sure the information is sent over the EtherNet.

2.2.1.2.3.1.3.2.4 If an error is detected in sending the message, then exit SndRcvRectrd.

Otherwise, set the EtherNet Handler State to indicate that the local

machine is waiting for the acknowledgement from the remote machine

and turn on the EtherNet Interrupts.

2.2.1.2.3.1.3.2.5 Wait Reply Time-Controlled loop.

A time controlled loop is simply a loop that terminates after a certain period of time. This is here so

that the local machine can wait for an acknowlegemeit from the target machine, saying that it has

received the request for information.

It the acknowledgement is received by the local machine, an interrupt is generated, causing an

exception to be raised by the EtherNet MicroCode, thus invoking the local Handler ElOReceiveDone.

El OReceiveDone sees that the EthorNet Handler State indicates that the local machine is waiting for

an acknowledgement (SwaitSndAck), and sigrnals acknowledgement by assigning the EtherNet

Handler State to be that of waiting for a reply (3WaitReply). If the acknowledgement has been

received, exit the resend loop. Otherwise, continue to attempt to send the message, up to five times.

and exit with an error if an acknowledgement is never received.

2.2.1.2.3.1.3.2.6 Got Reply Time-Controlled Loop

When an acknowledgement is received, another time controlled ioop is antered, waiting for an

interrupt which will again invoke the local handler E1OReceiveDone. This time, the Ethernet Handier

State is Indicating that the local machine is waiting for a repty (SWaitReply). If the exception is raised,

ElOReceiveDone sets up the acknowledgement packet and the pa,;ket of information to be recieved.

_•Q MQ E PAGE28

It then assigns the EtherNet Handler State to be that of 'Got the Reply' (SGotReply). At this point,

SndRcvRe-.ord ,vill exit successfully.

2.2.1.2.3.1.3.2.7 TimeOut.

"2.2.1.2.3.1.4 If 1he returned status was not success, repeat.

2.2.1.2.3.1.5 If the message buffer contains an error, repeat.

2.2.1.2.3.1.6 Call ZOGMsg.Receiveluffer to get header page

ReceiveBuffer waits for a buffer from a remote machine connected by the EthorNet.

2.2.1.2.3.1.6.1 Function ZogMsg.ReceiveBuffer.

2.2.1.2.3.1.6.1.1 If PgCnt 0 then exit ReceiveBuffer successfully. The buffer is empty,

and nothing is sent.

2.2.1.2.3.1.6.1.2 Sets up several records to send an acknowledgement to the remote

machine. This will acknowledge the 'Go Ahead' message sent by the

i- .remote machine during Its synchronized execution of Function

ZogMsg.GendBuffer. In essence, the local machine is saying, 'Go ahead

and send me the information I requested, I am ready to receive It'.

- 2.2.1.2.3.1.6.1.3 Resend Loop.

At this point ReceiveBuffer enters a loop to send the acknowledgement from the local machine

(which originally requested the information) to the remote machine (the machine sending the

information), tel~ing it to send the information that was requested (Go Ahead). It will attempt to send

the acknowledgement NumberResends times (5). Each time it attempts to send the

acknowledgement, it will eniter a time.controlled loop to see if the acknowledgerment sent was

received by the remote machine. If an error ocurs in sending the acknowledgement, then control

exits ReceiveBuffer with an error. Otherwise, the EtherNet Hardier State is set to indicate that we are

ready to receive the information (SWaitGoAck). We then enter the Go Ahead Time-controlled loop

"*i (mentioned above) to wait for an interrupt to begin receiving.

2.2.1.2.3.1.6.1.4 Go Ahead Time-Controlled Loop.

After the acknowledgement is s.ent, the Go Ahead Time-Controlled Loop begins. Here, the machine

which requested the information is waiting for an interrupt so that it can begin roceiving information, Ii

the interrupt occurs, an exception is raised and the local handler ElOReceiveDone is invoked. Inside

the handler, alother buffer, acknowledging the receipt of the buffer, is prepared, so that it can Le sent

"O,. M.lU.L= PAGE29

v'ýien the buffer is received. Finally, the Ethernet Handler State is changed to indicate that the

machinq will be receiving information (SReceiving).

Noie: It is conceivable that the acknowledgement could b~e sent so quickly that a second interrupt

could be generated before entering this loop. This 's not likely, but if t does occur, the buffer will have

been received before this time.controlled loop, in the handiei, and the ethernet handler state will have

been updated to indicate that the machine has gotten all the rnforrmation (SGetAll).

2.2.1.2.3.1 .e.1.5 If the interrupt Is not generated, another attempt is made at sending the

Go Ahead Acknowledgement. As usual, there are five attompts.

2.2.1.2.3.1.6.1.6 Wait Receive Time-Contolled Loop.

Ai this point the receiving machine enters a time-controlled loop to begin waiting for an interrupt

indicating that the information requested has arrived. If that interrupt occurs, an exception is raised

and the local handler ElPReceiveDone is again invoked, with the Ethernet Handler State being

SReceiving. Inside the handler, a check is made to see that the information comes from thv correct

source and that the page numbers are correct. Finally, after all this effort, the requested information Is

* transfered from the sending machine to the receiving machine and the receiving machine makes an

attempt to send an acknowledgement to the sending machine. If the acknowledgement is not sent,

the handler doesn't worry because the sending machine will time out.

Note : If the information was received in the first Time-Controlled loop, then the Ethernet Handler

State will reflect this and ReceiveBuffer will exit successfully.

2.2.1.2.3.1.6.1.7 If the Interruot was received, then the irlormation requesied will have

been received in the handler and the EtherNet Handler State will Indicate

that all infoemation has been received (SGotAII). In this case,

ReceveBuffer erits successfully. Otherwise, RoceiveBuffer will tImeout,

2.2.1.2.3.1.7 Calls Function ZogMsg.Receive~uffer to geet the frame body.

: 2.2.1.2.3.1.8 if that failed, repeat the initial request.

2.2.1.2.4 Eise, probe the remote machiie. If It responds, send the request and read the

header and exit if succssful.

Z..O.M.ODULES PAGE30

"2.2.1.2.5 If the current machine has a backup copy, use NetServ.RdFH-

2.2.1.2.6 Else, try all of the other backup copies with ZNet.ZReadHeader.

2.2.1.2.7 Otherwise, give up and return an error.

2.2.1.3 Function ZNet.ZOpenFrame

ZOpenFrame is designed to open a frame on a remote machine. It will attempt to

send the message three times to the remote machine before it gives up. The

number three was chosen arbitrarily. It uses two pointer types, do-

"2.2.1.3.1 Intializes Variables and increments retries to begin a makeshift loop using

labels.

2.2.1.3.2 The variables, local to the module ZNet, OutMsgP and InMsgP, are recast as

open frame request and reply pointer types, to be used as such.

2.2.1.3.3 Prepare the EtherNet request packet, through various assignments.

2.2.1.3.4 Function ZogMsg.SndRcvRecord

S,'idRcvRecord does a synchronous send/receive pair between two machines connected by the

ethernet. The routine sends a message across the Ethernet and waits (with a timeout) for a reply.

Errors are returned accordingly. (For details see p. 27)

The messages generated by SndRcvRecord cause ethernet exceptions to be raised on the local

(sending) machine and target (recieving) machine, and these then raise the 'ElOReceiveDone'

exception, locally and within ZOG. The local E10RecieveDone handler of SndRcvRecord handles the

acknowlegement and reply of the target machine to the local machine. The E10RecieveDone handler

*• at the ZOG system (in Module Zog) level handles the receiving of the request of the sending machine

and processing it.

2.2.1.3.4.1 ZOG.ElOReceiveDone

The EtherNet exception handler in ZOG is invoked when a remote machine sends the current

machine a message. This exception handler contains nested handlers to protect ZOG from dying

- when additional messages are received while ZOG is processing ethernet messages.

0=

ZQ" MOD 2 PAGE 31

2.2.1.3.4.1.1 Change the mouse image to the hollow arrow. This is purely cosmetic.

2.2.1.3.4.1.2 Call ZOGMsg.HandleMsg to get the message buffers. If an error occurs,

ignore the message. The other machine will resend it if it is important

enough.

For details on the inner workings of ZOGMsg.HandcleMsg see p. 23.

2.2.1.3.4.1.3 Function ZNetServer.ZNetServer.

Module ZNetServer is the counterpart of Module NetHandl on the remote machine. It invokes the

local routines which will return the necessary data. It is simply a case statement which uses the input

message id to determine which routine should be called. In this example, it will call Procedure

ZNetServer.XZOpenFrame.

2.2.1.3.4.1.3.1 Procedure ZNetServer.XZOpenFrame.

XZOpenFrame is the equivalent, on the remote machine, to Procedure NetHandl.OpnF on the local
I fitmachine. Its method is very differnt from that of Procedure NetHandI.OpnF because of the fact that it

must perform its task on a remote machine. It is important to notice, that both will call Procedure

NetServ.OpnF. to do the low level reading of the frame.

2.2.1.3.4.1.3.1.1 Recast variables local to the Procedure to be ethernet request and reply

types.

2.2.1.3.4.1.3.1.2 Function ZNetProcs.ZOpenFrame.

ZNetProcs is the counterpart to ZAccessProcs and handles access on a remote machine.

2.2.1.3.4.1.3.1.2.1 Verifies that the subnet exists, via a call to Function

ZogNetServer.Chk- SnRecord. ChkSnRecord is very similar to

GetSnRecord, except that the subnet information passed along with

the request is assumed to be correct. This eliminates the need to
request it from the MasterNodes Subnet Index, so only the local

subnet index needs examined to make sure that the information Is

"correct. ChkSnRecord also opens the subnet by inserting it into the

local subnet index and making sure that the file exists.

2.2.1.3.4.1.3.1.2.2 Function NetServ.OpnF-.

This function will open a frame for modification,lock it from access by other users, and read the

frame from the file.

. Calls Function NetServ.GOpnUser to see if the current user has another frame open. If

L_

ZIAMQDULE PAGE32

so, exit with an error.

* Calls Function BaseLib.TSidValid to check for a valid Subnet Id.

* Calls Function NetServ.GSnRec which obtains the subnet from the local subnet index.
The subnet was put there during initalization or during the call to Function
NetServ.OpnSn - from Function ZogNetServer. GetSnRecord.

-. If no errors have occured to this point, ethernet interrupts are turned off, via Procedure
ZEInt.ElntOff. Then the frame header is read into a buffer by a call to Procedure
FileSystem.FSBIkRead, and the frame header buffer count is assigned (FHBCnt).

. Calls Function NetServ.GOpnFid to see if the current frame is already open. If so, the
ethernet interrupts are turned back on, via a call to ZElnt.ElntOn, and this user cannot
access that frame.

' Calls Function NetServ.CrOpnRec which adds another frame to the list of open frames
(refered to as locking the frame).

_ More

2.2.1.3.4.1.3.1.3 Calls Function ZogMsg.SendRecord to send a reply to the sending

mchine.

"For details on the inner workings of ZOGMsg.SendRecord see p. 24.

2.2.1.3.4.1.3.1.4 Calls Function ZogMsg.SendBuffer to send the actual frame he ader.

For details of the inner workings of ZOGMsg.SendBuffer see p. 25.

2.2.1.3.4.1.3.1.5 Calls Function ZogMsg,•endBuffer to send the actual Frame body.

2.2.1.3.4.1.4 Clean up the mouse image and anything else if necessary.

2.2.1.3.5 Calls Function ZogMsg.RecieveBuffer if the reply came back successfully to

receive the frame header.

For details on the inner workings of ZOGMsg.ReceiveBuffer see p. 28.

2.2.1.3.6 Calls Function ZogMsg.ReceiveBuffer to receive the buffer containing the frame*

body.

2.2.1.4 Function CreateFrame: Allows the user to create ANY specified frame.

ZOG MODULES PAGE 33

2.2.1.5 Function CreateNextFrame: Allows user to create the noxt frame in a subnet

2.2.1.6 Function ZAccessProcs.CloseFrahie

CloseFrame handles the closing of the frame on the primary machine and closing on a secdondary

machine with different routines. This will becomo evident in the description of CloseFrame which

* 'follows;

2.2.1.6.1 Calls Function ZAccesssProcs.CheckUser to make sure the user is currently

logged in.

* 2.2.1.6.2 Calls Function ZogNetServer.GetSnLocal which hashes into the local subnet

index for the correct subnet and returns true if found. As mentioned, it checks

only the local subnet index because the frame should have been opened.

2.2.1.6.3 Checks the local servers table to make sure the primary node Is up. If not listed

as up, calls Function ZogNetServer.Probe to see if the primary node is actually

up. If so, the local servers table is updated. If not, exit with an error.

2.2.1.6.4 Checks to see if all m3chines with secondary copies are up in the same manner

as described above. If a secondary node Is not up then sit to false an entry In

3 the array SecUpdate (An array repre- senting the status of of secondary

machines).

"2.2.1.6.4.1 If the current machine contains the primary copy of the frame then call

Function NetServ.CIsF- to close the frame.

2.2.1.6.4.1.1 Function NetServ.CIsF -

SCIsF* is designed to write and close a frame of the primary copy of a subnet.

2.2.1.6.4.1.1.1 Calls FunctionNetServ.GOpnUser and assigns the value of the frame on

the open record list to a variable local to CIsF.-.

2.2.1.6.4.1.1.2 Calls Procedure NetServ.SetModFH to set modification information of the

frame. Modification Information includes a new version number, the user

r. modiflying, date, time, and whether modification was performed by an

agent.

ZQ. MODULES PAGE 34

2.2.1.6.4.1.1.3 Turn off EtherNet interrupts, via Procedure ZElnt.ElntOff. Calls Proc

cedure NetServ.WrFH to write the frame header to a buffer. Turn

-•Eth- erifet interrrupts back on, via Procedure ZEInt.ElntOn.

2.2.1.6.4.1.1.4 Writes the header page arnd body pages of the modified frame to ,4 file, via

"Procedure FileSystem.FSBIkWrite. If the frame gets smaller, due to the

modification, a page of zeroes is written to the file to terminate the frame

body. If the frame became larger, calls Procedure NetSev. SetFileLen to

update the file to the new number of pages in the frame body.

Turns the EtherNet interrupts back on.

9 Calls Procedure NetServ.ErOpnRec to remove the open frame record from the list of
open frames, thus unlocking the frame.

*Lastly, prepare modification information to be added to the file Change. Log. The file
Change.Log stores information about every frame that is modified.

Add Modification information to file Change.Log, via Procedure BaseLib. AppStrFile.
AppStrFile will append the string to the end of a file.

2.2.1.6.4.2 Otherwise, the primary copy resides on another machine and Function

ZNet.ZCIoseFrame must be used to write and close the frame on a remote

machine.

2.2.1.6.4.2.1 Function ZNet.ZCloseFrame.

ZCloseFrame is designed to close a frame on a remote machine. It uses types, from Module

ZogMsgDefs, CIsFOPTyp as a close frame request packet, and CIsFIPTyp and CIsF2PTyp as close

frame reply packets.

2.2.1.6.4.2.1.1 Initializes the local variables for loop using lbells.

2.2.1.6.4.2.1.2 Recasts (restructures) the outgoing message (outMsg) and ingoing

message (InMsg) to frame request and reply packets.

2.2.1.6.4.2.1,3 Prepares the EtherNet Request packet.

2.2.1.6.4.2.1.4 Calls function ZogMsg.SndRcvRecord to send a request to close a frame

on the remote machine and receive a reply to that request. If not

successful, then start all over, step 1.

Z-G Q ,MODU PAGE 35

2.2.1.6.4.2.1.4.1 Calls function ZogMsg.SndRcvRecord to send a request to close a frame

on the remote machine and receive a reply to that request. If not

.. successful, then start all over, step 1.

2.2.1.6.4.2.1.4.1.1 Function ZogMsg.SndRcvRecord.

SndRcvRecord does a synchronous send/receive pair between two machines connected by the

ethernet (for details see p. 27). The routine sends a message across the Ethernet and waits (with a

O, timeout) for a reply. Errors are returned accordingly. The messages generated by SndRcvRecord

cause ethernet exceptions to be raised on the local (sending) machine and target (recieving)

machine, and these then raise the 'ElOReceiveDone' exception, locally and within ZOG. The local

ElORecieveDone handler of SndRcvRecord handles the acknowlegement and reply of the target

machine to the local machine. The ElORecieveDone handler at the ZOG system (in Module Zog) level

handles the receiving of the request of the sending machine and processing It.

2.2.1.6.4.2.1.4.1.1.1 ZOG.ElOReceiveDone on the target machne receives the message.

The EtherNet exception handler in ZOG is invoked when a remote machine sends the current

machine a message. This exception handler contains nested handlers to protect ZOG from dying

when additional messages are received while ZOG is processing ethernet messages. For details on

ZOGMsg.HandleMsg see p. 23.

2.2.1.6.4.2.1.4.1.1.1.1 Change the mouse Image to the hollow arrow. This Is purely

"cosmetic.

,2.2.1.6.4.2.1.4.1.1.1.2 Call ZOGMsg.HandleMsg to get the message buffers. If an error

occurs, Ignore the message. The other machine will resend it If It

Is important enough.

2.2.1.6.4.2.1.4.1.1.1.3 Pass the message buffers to Function ZNetServer.ZNetServer for

F' procesing.

Module ZNetServer is the counterpart of Module NetHandl on the remote machine. It invokes the

, local routines which will return the necessary data, It is simply a case statement which uses the input

* message id to determine which routine should be called. In this example, it will call Procedure

ZNetServer.XZCloseFrame.

Procedure ZNetServer.XZCloseFrame.. XZCloseFramz is the equivalent, on the remote

machine, to Procedure NetHandI.CIsF on the local machine. Its method is very diffemt from that of

Procedure NetHandl.CIsF because of the fact that it must perform its task on a remote machine. It is

important to notice, that both will call Procedure NetServ.CIsF. to do the low level writing and closing

Zgg '" 2ULES PAGE36

"of the frame.

Recast variables local to the Procedure to be ethernet request and reply types.

Calls Function ZogMsg.SendRecord to acknowledge receipt of the request to write and

close a frame. It not successful, exit XZCloseFrame erroneously.. Sends a record to a

remote machine and waits for an acknowledgement of receipt of the record. Sets addresses to be

correct, in various records, so that the record can be received on the remote machine.

Resend Loop. At this point the SendRecord enters a loop to send a request to the other machine,

saying, "Well, Go ahead". The loop will attempt to send the request a maximum of NumberResends

times (5). To send the request, first the ethernet interrupts are turned off. Next, a call is made to

Procedure EtherlOlO.E IOWIO which starts an EtherNet I/0 operation and waits for it to complete. In

this case, information is being sent, so ElOWIO makes sure the information is sent over the EtherNet.

If an error Is detected in sending the message, then exit SendRecord. Otherwise, set the

:o EtherNet Handler State to indicate that the local machine Is waiting for the

acknowledgement from the remote machine (SWaitAck) and turn on the EtherNet

interrupts.

Got Acknowledgement Time-Controlled Loop. If the acknowledgement is received by the

machine sending the message, an interrupt is generated, causing an exception to be raised by the

EtherNet MicroCode, thus invoking the local Handler ElOReceiveDone. ElOReceiveDone sees that

the EtherNet Handler State indicates that the local machine is waiting for an acknowledgement

(SwaitAck), and signals acknowledgement by assigning the EtherNet Handler State to be that of 'Got

the Acknowledgement' (SGotAck). If the acknowledgement is received, exit SendRecord. If after

five attempts no acknowledgement is received from the remote machine, then exit

SendRecord with an error.
9,

Calls Function ZogMsg.ReceiveBuffer to receive the frame body to be written. Again, If

unsuccessful, exit erroneously.. For details of the inner workings of ZOGMsg.ReceiveBuffer see

p. 28.

Calls Function ZNetProcs.ZCloseFrame to write and close the frame on machine where

the frame exists.. For details on NetServ.CIsF. see p. 33.

• Calls Function ZogNetServer.GetSnLocal, which checks the local subnet indeA for the
subnet containing the frame. Since ZCloseFrame iu called only from the machine
containing the primary copy of the frame, this is merely a double check to make sure the

-. . . . m4 -

Z-G MODULES PACE37

frame is indeed there.

* Calls Function NetServ.CIsF - to do the actual low level writing and clos- ing of the frame.

Calls Function ZogMsg.SendRecord to send an acknowledgement to the machine sending

the frame body, indicating the frame body was received.

Calls Function ZogMsg.SendBuffer to send frame header information back to the

sending machine. Again, if unsuccessful exit erroneously.. If PgCnt = 0 then exit

SendBuffer successfully. The buffer is empty, and nothing is sent. Set the Ethernet

Handler State to indicate that this machine would like to go ahead and send a buffer

(SWaitGo).

Wait for Go Ahead Time-Controlled Loop. At this point a time controlled loop is entered, and its

purpose is to wait for an interrupt which indicates that it is all right to send the first buffer. If the

interrupt occurs, the local handler ElOReceiveDone is invoked and acknowledgement is sent to the

remote machine. If this acknowledgement is sent successfully, the EtherNet Handler State is set to

. indicate 'Go Ahead and Send the First Buffer' (SSendFirst). Otherwise, the handler is exited, leaving

-' the Ethernet Handler State in the original state. Set up records with correct addresses to send

first buffer.
3

Resend Loop.

e Assumes initially that only one page is being sent and puts that page into the buffer to be
sent.

* Checks to see if there is more than one page to transfer. If so, sets the buffer page size to
two and puts the second page in the buffer.

. Turns the Ethernet interrupts off and sends the Zog Buffer Packet with a call to
Procedure EtherlOIO.ElOWIO. If sent successfully, sets the EtherNet Handler State to be
that of 'Waiting for a Buffer-Received Acknowledgement' (SWaitBufAck) and turns
Ethernet interrupts on. Otherwise, exits SendBuffer with an error.

." Buffer Received Acknowledgement Time-Controlled Loop. At this point, again another time-

controlled loop i3 entered. This time it is waiting for an interrupt indicating that the buffer was sent. If

that interrupt occurs, the local handler ElOReceiveDone is invoked. It first examines the

* acknowledgement from the machine that received the buffer, for correctness. If the

acknowledgement is correct and if all the information has been sent, the EtherNet Handler State Is set

A to indicate that all has been sent (SSentAII) and the handler is exited. Otherwise, the handler attempts

(only once) to send the next buffer itself, in the same fashion as SendBuffer. If after five attempts

.ZOG MODULE PAGE 38

the buffer has not been sent, then exit SendBuffer with an error.

2.2.1.6.4.2.1.4.1.1.1.4 Clean up the mouse Image and anything else If necessary.

2.2.1.6.4.2.1.5 If successful, call functioti ZogMsg.SendBuffer to send the frame body to

the remote machine. If not successful, then start all over at step 1.

For detials on the inner workings of ZOGMsg.SendBuffer see p. 28.

2.2.1.6.4.2.1.6 If SendBuffer was successful then calls Function ZogMsg.ReceiveRecord

to receive the acknowledgement sent by the machine which received the

frame body. If unsuccessful, start all over from s5tep 1.

P2.2.1.6.4.2.1.6.1 Function ZogMsg.ReceiveRecord.

ReceiveRecord receives a record from another machine. It is used only in CloseFrame function of

Zog, because there are more acknowledgements that the SndRcvRecord cal handle in closing a

frame.

2.2.1.6.4.2.1.6.1.1 Sets the address from where the message should be received.

2.2.1.6.4.2.1.6.1.2 Sets the EtherNet Handler State to indicate that the sending machine

2.2,1.6.4.2.1.6.1.3 Got Reply Time-Controlled Loop.

At this point the procedure w1l, enter a time controlled loop waiting for an interrupt which will again

invoke the local handler ElOReceiveDone. This time, the Ethernet Handler State is indicating that the

local machine is waiting for a reply (SWaitRev). If the exception is raised ElOReceiveDone assigns

the EtherNet Handler State to be that of 'Got the Reply' (SGotRev). At this point, ReceiveRecord will

exit successfully.

2.2.1.6.4.2.1.6.1.4 If the Interrupt is never received, ReceiveRecord will time out.

2.2.1.6.4.2.1.7 If the acknowledgement is received, calls Function ZogMsg.ReceiveBuffer

to obtain the updated frame header information of the frame that was

closed.

For details on the inner workings of ZOGMsg.ReceiveBuffer see p. 25.

--

S; ~~~..-........................,.,, ...:.....,...-....,.....,....... _

"ZOG MODULES PAGE 39

2.2.1.6.4.3 Following this, Each secondary copy of the frame is updated. If the current

"machine has a secondary copy then, calls Function NetServ.Update to write

gnd close the secondary copy.

2.2.1.6.4.3.1 Function NetServ.Update

UpDate is called only in the event that the current machine has a sec- ondary copy of the subnet of

the frame. It is very similar to Function NetServ.CIsF. with the exception to the following two items;

* In the beginning, It must obtain its subnet information from the local subnet index instead
of the list of oper, frames. This is because the primary copy has been written and closed,

and the open frame record has been removed from the list of open records.

* Lastly, this information is not added to the fle Change.Log, because it lists only what

frames have been modified, nut each individual frame and backup copy modified.

2.2.1.6.4.4 If the secondary copy belongs on a remote machine then calls Function

ZNet.ZClo;eFrame. Remember, a frame can have copies on as many machines

as the creator of the subnet specified.

2.2.1.6.4.5 if there were no secondary update failures (all secondary machines were up),

then CloseFrame was successful and exit.

3 2.2.1.6.4.6 Otherwise, calls the nested Procedure

ZAccessProcs.CloseFrame.SavSecUp- date. This will store Is file sec.update

"the frame number,subnet ID, version number, date, time, curusername and a

list of machine names (server names) of those secondary updates which

failed.

2.2.1.7 Function QuitFrame: Closes a frame, but will not write to frame.

2.2.1.8 Function EraseFrame : Deletes a frame.

2.2.2. Frame Modification Routines.

Frame Modification routines modify existing frames. These routines follow the same form as the

Frame Access Routines, in terms of locating the subnet of a frame. That is, calling routines in Module

NetServ for modifying a local frame and calling routines in Module ZNet to modify frames on a remote

machine. One important difference here is that these routines are called via Agents, which means that

these frames awe already open when a frame modification routine is called. Thus, the subnet

containing the frame will already be listed in the local subnet index. This results in a call to Function

ZogNetServer.GetSnLocal instead of a call to Function ZogNetServer.GetSnRecord in the frame

modification routines. Both return the same information, GetSnLocal simply does it with less work.

S-:-/ -.- '.,"-.'; "i -'.'-'.-. -". .- '. "' . --- " *.." , " . .- . .".'i". . .- . i ". ". .-

O PAGE 40

These routines will return success if successful.

* Function AddOwner - calls either Function NetServ.AddOwnF - ,,local) or Function
ZNet.ZAddOwner (remote), to add new owner.

e Function RemoveOwner • calls either Function NetServ.RemOwnF - (local) or Function
ZNet.ZRemoveOwner (remote), to remove cwner.

* Function SetFrProtection - calls either Function NetServ.SetProt - (local) or Function
ZNet.ZSetProtection, to set frame protection bits.

2.2.3. Subnet Access Routines.

Subnet Access Routines are not as similar in nature as frame access and frame modification ,

routines. Some use routines in Module NetServ and Module ZNet, while others do not. A brief

summary of each of the functions is given;

2.2.3.1 Function CreateSubnet

CreateSubnet will call Function ZogNetSerier.EnterSubnet to update the MasterNodes Subnet

index and update the subnet index file to reflect the addition of the subnet being created by the

calling routine, Procedure Nethandl.CrSnSec. Physically, there are no new frames stored on disk, just

the addition of the subnet name to the proper indexes.

CreateSubnet will select the primary node, unless it is unlisted in the net.servers database, then the

primary node becomes the master machine. In dealing with secondary nodes, CreateSubnet assigns

values to an array representing those machines those machines to recieve backup copies. This

in- formation is obtained from the file Sec.Default, during initialization and stored in a global array

which is imported from Module ZogNetServer.

2.2.3.2 Function ClearSubnet : Clears (deletes) a subnet.

2.2.3.3 Function IsSubnetDefined Checks to see It a subnet is defined in local or Master

Subnet Index.

2.2.3.4 Function GetHiSubnet : Returns to the calling routine, the highest frame number In
the subnet.

2.2.3.5 Function GetNextSubnet Generates the next subnet in the master node subnet

Index.

*l

6-

•. .jJ

Z,, MODULES PAGE41

2.2.4. Utility Routines

These utility routines are called by Ohe Module NutHandl Utility routines and are summarized below.
Function GetCurNode

"Returns to the calling routine the Current node (mcichine number) and Current
machine name (i.e. mach1).

Function GetCurUser
Rexurns to the calling routine the ctlrrent user Name (i.e. rch).

Function GetNodeName
Return3 a machine name to calling routine.

Function GetAgentFlag
Returns success to the calling routine if an agent is currently being run.

2.2.5. Zog and Agent, Login/Logout Routines

These routines are not currently in use. They were designed to run under Spice (the forerunner to

ZOG), to allow for spawning.

2.2.r.1 Function ZogLogtn

Inserts another user into the the table of current zog users, represented by the array Loggedin,

which is declared in Module ZogNetServer and Exported to Module ZAccessProcs. This function also

increments the variable MaxZOGPoria, which is also declared in Module ZogNetServer and which is a

count of the number of currently logged in users.

2.2.5.2 NetString - String < = > Numeric Conversion Utilities

These routines make use of the PERQ PASCAL extensions such as Trunc, Float and Round and

Stretch to handle most of the work.
Function RoundLong

Converts a real number to a rounded long Integer

Function TruncLong
Converts a real number to a truncated long integer

Function FloatLong
Converts a long integer tc a truncated real number

Procedure CvRealStr
Converts a real number to a character string

Function CvStrReal
Converts a character string to a real number

ZOG MDULk PAGE 42

2.2.5.3 Function AgentLogin Adds a new entry into array LoggediN and sets the

AgentFlag field of this array entry to true indicating that this spawned prot;ess Is

an agent

2.3. NetServ

Module NetServ contains lower level routines which access the frame or subnet, except for the

actual I/0, which is done at some still lower level in Module FileSystem, and routines which aid in this

process. These routines are called by Module ZAccessProcs (for local requests) or Module

ZNetProcs (for rc.mote requests).

The routines are broken down into categories to coincide with their highei level routines In

ZAccessProcs and ZNetProcs:

2.3.1. Frame Access Routines

These routines can, for the most part, be related to their Module NetHai idl relatives by looking at the

* routine names. All have the same routine names followed by an underscore, with the exception of

Function UpdateF which has no corresponding Module NetHandl routine, All will return an integer

(Gen- eralReturn) value, that of the constant 'success', if successful.
. Function RJF - Reads a frame from a file into a buffer

Function RdFH - Reads a frame header from a file into a buffer

Function OpnF - Opens a frame for writing, locks it from access by other users, and reads the
frame into a buffer

Function CrFr - Creates a specified relative frame

Function CrF - Creates the next frame in the subnet

Function ErF - Deletes a frame from a subnet by writing pages of zeroes

Function CIsF - Writes and Closes a modified frame on a primary node

* Function UpDateF Writes and Closes a modified frame on a secondary node.

*' ** 2.3.2. Frame Modification Routines

These routines do the actual work of modifying existing frames. In the same way as the other Net

* Server routines, these can be recognized by their corresponding Module NetHandl Routine Names;

with the addition of the underscore character following the NetHandl routine name. All will return the

* -integer value of 'success' (type GeneralReturn from Module NetDefs), if successful.

•

jQJ~J~PAGE43

2.3.3, Subriet Actcess, Routines

2.3 4. Uth1ty routines

These utility routines nre c~alled only ýCy the other routines in Module NetServ. They can be broken

cocwri intc the nfolowing areas-

2.3.4.1 Subnat record Utilities

TheSO 1.tiliti, routineýý vwork with stib'iet rucords (SrsRecPTyp) in the local subnet index (SnTable.p
14 ~Function HashSid Returns an integpr va'lue representing the hashed voilue of thet subnet being

sought irn the loca! subniet inidex.

Function CrSnRec Creates a local suhnet record and inserts nt into the local suLnet. index. Returns a
po,'nter to the new subnet record.

2.3.4.2 Open 7rame Record Utilities

These routines deal with the lis of open records, which ~s mainiain. ed and 3erves to lock other

users from trying to rn.odify a frame already oponed. The open record list consists of OpnF~ecPyp'!%.

Typfe OpnRecPtyp, is Private to Module Netserv. Thus each machine has its own list 01 frames that

* ~have been opened locally or from a remote rnkchine.
Procedure Ins~pnRec

lInserts an open record at the beginning of the list of upe'n records. It is called by
anoth~er utility in this rection, Function CrOpr1Rec.

S Procedure De/QpnRec
Deletas an cpen record from the open record list. It is called by another Utility In

K ~this sec',ion, Function ErOpnRiec.

Functiun Cr0 proRoc
Creates a new open record for the open record I~st,

Procedure Fr~pnflec
Deletes an open record from the open records list. The deleted node is not
disposed of, but sa~led as part of ZOG's own garbage collection mechanism.

Function G~pnUser
Searches tha open record list for a ;rame, to see if it is already open. Returns G
pointer to the open record frame.

Function GOpnFid Same ptirpose as G~pnUser, only uses different fields on which to search.

2.3.4.3 Subnet Utliety

*This function is called by Function NetServ.CIsF- if a modified frame is larger than before It was

modi'fied.
Procedure SetrlleLength

Sets the length of a file to a given number of pages.

ZQG Q.RULE PAGE44

2.3.4.4 Frame Handling Routines

2.3.4.4.1 Procedure WrFH : Writes a Frame Header in record form into a buffer in ZBH

form. Uses several nested procedures to write strings to the buffer.

An individual frame is written out to disk in a modified "BH" format, called ZBH format. This format

was developed at CMU as a way of storing variable types of records in an ASCII disk file. Each item In

a logical record is 3tored as a line of the form:

+ <char> + [<ASCII string>]<EOL>

where <char> is a single ASCII character which encodes the type of data stored on that "line", the

optional <ASCII string> can be text, numbers, codes or special characters, and <EOL> is the end-of.

line character(s).

2,3.4.4.1.1 ZBH Codes for Frame Header

These are coded in BaseLib.ParseFH

These codes are for the non-text information contained in the frame. Other than the protection

code, this information is maintained automatica!ly by ZOG.
ZBH Item Representation of string in file

"+ A + Frame Id String

+ B+ Created by Agent Boolean

"+ b + Modified by Agent Boolean

•. + c+ Creation Date Integer String

+ M + Modifier Name String

+ m+ Modification Date Integer String

+ p+ Protection Code Character

+ t+ Modification Time Integer String

+ U + (List of) Frame Owners String

+ V+ Frame Version Number Integer String

*' . + V + (List of) Frame Accessors String (not used)

* + Z + End of Frame Header Marker

*.- 2.3.4.4.1.2 ZBH Codes for Frame Body

The code for this is in NetHandI.ParseF. The frame body consists mostly of text fields. This

* "information is stored in Frame Title, Frame Text, Options, Local Pads Order. Within each Item of the

frame, the order is Item Marker & Selection Character, Item Text, Item Position, Next Frame, Action.
ZBH Item Representation of string in file

.- , • • * . . . - . .. , .

SZOG MODULES PAGE 45

+ C + Frame/Selection Comment String

+ E+ Frame/Selection Expansion Area String

+ F+ Selection's Next Frame String

+ G + Global Pads Frame String

_ •:: .+/+ Frame Text Marker String (Normally Empty)

+ L + Local Pad Marker & Selection Character Character

+ 0 + Option Marker & Selection Character Character

+ P+ Item's Position Pair of Integer Strings

+ T + Frame/Selection Text String

+ X + Frame/Selection Action String

: + Z+ End of Frame Body Marker

+ <other character)+
Extra Fields String

2.3.4.4.2 Pr-ocedure SetCrFH: Sets the creation Information when a frame Is created.

Creation information includes the frames version number, protection, owners,

creation date, and a field Indicating If the frame was created by an agent.

2.3.4.4.3 Procedure SetModFH : Sets the modification information when the frame is

modified. Modification Information Includes the frame version number,

modifier's login name, moddate, modtime, and a field to Indicate if the frame was

modified by an agent.

2.3.5. Initialization routine

Initializes this module's variables, buffers and tables.
Procedure niServ Sets the local subnet index to nil. Sets all garbage collection lists to nil. Creates

temporary frame header record and buffer and a buffer for writing zeroes to a file.

2.4. ZNet

Accessing frames and subnets on a remote machine Is done through routines in Module Znet.

These routines are called by routines in Module ZAccessProcs whenever a frame or subnet Is not

located on the current machine, and must be accessed via the EtherNet. The corresponding routine

In Module ZAccessProcs has nearly the same name as the Module ZNet routine, without the 'Z'

preceding IL

All ZNet routines follow the same basic format. First, they set up an EtherNet request packet to send

- ~ -

r., O PAGE 46

to the target machine. Then they all call Function ZogMsg.SndRcvRecord to Initiate the EtherNet

communication between machines.

2.4.1. Frame Access Routines

Below are a list of the frame access routines. Three of these routines have been discussed in

greater detail. For details on ZReadHeader see p. 22 For details on ZOpenFrame see p. 30 For details

on ZCloseFrame see p. 34
Function ZReadFrame

Reads a frame.

Function ZReadHeader
Reads frame header information.

Function ZOpenFrame
Open a frame for modification.

Function ZCrFrame
Allows the user to create ANY specified frame.

"Function ZCrNextFrame
Allows user to create the next frame in subnet.

Function ZCloseFrame
Writes and Closes a frame.

Function ZQuitFrame
Closes a frame, but will not write to frame.

Function ZEraseFrame
Deletes a frame.

Function ZUpdateFrame
Writes and closes a secondary copy on the local machine.

2.4.2. Frame Modification Routines
Function ZAddOwner

Adds a new owner to the frame

Function ZRemoveOwner
Removes an owner of a frame

Function ZSetFrProtection
Sets frame protection bits

2.4.3. Subnet Access Routines
Function ZCrSubnet

Creates a new index

Function ZClearSubnet
! Clears (deletes) a subnet

_-, --

ZQG MQULES PAGE 47

,.. Function Z GetSnlnfo
F tCalled only on the master node to get subnet information.

Function ZGetHfiSubnet
Returns to the calling routine, the highest frame number in the subnet

Function ZGetNextSubnet
Generates the next subnet in the master node subnet index

2.5. ZEInt

Module ZEInt contains only four procedures, which are used for turning EtherNet interrupts Off and

On.
Procedure EintOff Turns off the EtherNet sofware interrupts.

Procedure ElntOn Turns on the EtherNet software interrupts. Calls the compiler directive InLineByte
to turn off the interrupts before calling Prccedure Etherlnterrupt.ElOSrv. Then
calls Procedure ElOSrv to service any interrupts which may have been sent to the
current machine since the prior call to turn off the EtherNet interrupts. Thus,
EtherNet interrupts are not lost when a machine has them turned off, they are

Procedure E/ntNotReady
sets a signal (local to the module) to false indicating that the machine Is not yet
ready to process ethernet interrupts, and turns ethernet interrupts off.

Procedure ElntReady
Sets the same signal to true, indicating the machine is ready to process ethernet
interrupts, and turns the interrupts on.

2.6. ZNetServer

ZNetServer routines serve the same function on a remote machine as a Module NetHandl routine on

the local machine. They are the higher level routines in frame and subnet access on the remote

machine. Routines in module ZNetServer are invoked wher in processing Zog, an interrupt has raised

an exception on a machine. The exception is processed in the top level of Zog by the Handler

Zog.ElOReceiveDone. ElOReciveDone calls Function ZNetServer. ZNetServer which acts as a

dispatcher to the proper ZNetServer routine to process the request.

In general, these routines call the lower level routines to perform the request, then send back some

reply to the requesting machine.

ZOGM012ULES PAGE 48

2.6.1. Frame Access Routines

These higher level routines will call routines in module ZNetProcs to perform the requested activity.
. .. •Function XZReadFrame

Reads a frame

Function XZReadHeader
Reads frame header information

Function XZOpenFrame
Open a frame for modification

Function XZCrFrame
Allows the user to create ANY specified frame

Function XZCrNextFrame
Allows user to create the next frame in subnet

Function XZCloseFrame
Writes and Closes a frame

Function XZQuitFrame
Closes a frame, but will not write to frame

Function XZEraseFrame
Deletes a frame

Function XZUpdateFrame
Writes and closes a secondary copy on the local machine

2.6.2. Frame Modification Routines

These higher level routines again, call routines in module ZNetProcs to perform the requested

activity.
Function XZAddOwner

Adds a new owner to the frame

Function XZRemoveOwner
Removes an owner of a f,'ame

Function XZSetFrProtection
Sets frame protection bits

2.6.3. Subnet Access Routines

The higher level routines which call routines in module ZNetProcs to perform the requested activity.
Function XZCrSubnet ,r

.* Creates a new index

Function XZClearSubnet
Clears (deletes) a subnet

Function XZGetSnlnfo
Called only on the master node to get subnet information

" - " " " . ' " , -. . - - - - ," " .' " " . " " " " ' - , . - - ° " " ""6L : "- - . ,_. - - , , ': '. ," " ' '' ' •' ' " " " - ' ' ' ' '

Z• MODULES PAGE 49

,, Function XZGetHiSubnet" FninX Returns to the calling routine, the highest frame number in the subnet

Function XZGetNextSubnet
Generates the next subnet in the master node subnet index

2.7. ZNetProcs

All ZNetProcs routines provide an interface between higher level routines (i.e. those in NetServer)

who want to access or modify a frame or subnet located on a REMOTE machine, and lower level

routines which perform the actual accessing of frames and subnets. Routines here are called by

routines in Module ZNetServer to carry out, whatever task, on a remote machine. Routines in

ZAccessProcs carry out these tasks when frames or subnets are located on the local machine. All

routines in ZNetProcs have the same names as there counterparts in Module ZAccessProcs, except

that each routine name is preceded with a 'Z'. For example, the routine corresponding to

ZAccessProcs.ReadFrame is ZNetProcs.ZReadFrame.

In General, these routines check the local subnet index for a subnet on the machine and perform

the requested activity by calling a NetServ routine.

2.7.1. Frame Access Routines

£ These routines provide an interface between higher level and lower level frame access (view,

create, delete) routines. Although doing very different things, they use very much the same method in

locating a subnet or frame. These Functions will return success to the calling routine in Module

ZNetServer if successful.
Function ZReadFrame

Reads a frame

Function ZReadHeader
Reads frame header information

Function ZOpenFrame
Open a frame for modification

Function ZCrFrame
Allows the user to create ANY specified frame

"Function ZCrNextFrame
Allows user to create the next frame in subnet

Function ZCloseFrame
Writes and Closes a frame

Function ZQuitFfame
Closes a frame, but will not write to frame

ZOIMDUESPAGE 50

"Function ZEraseFrame
Deletes a frame

Function ZUpdateFrame
Writes and closes a secondary copy on the local machine

2.7.2. Frame Modification Routines

"These routines use Function ZogNetServer.GetSnLocal to locate the subnet of the frame to be

modified, since the subnet should already be on the machine calling a ZNetProcs routine. They then

"call the appropriate Module NetServ routine to perform the lower level work.
Function ZAddOwner

Adds a new owner to the frame

"Function ZRemoveOwner
Removes an owner of a frame

Function ZSetFrProtection
Sets frame protection bits

2.7.3. Suboiet Access Routines

Suonet Access Routines are not as similar in nature as irame access and frame modification

routines. Some use routines in Module NetServ and Module ZogNetServer, while others do not. A

brief summary of each of the functions follows.
Function ZCrSubnet

Updates the master node sabnet index and the file :zognet>Subnet.lndex

"Function ZClearSubnet
Clears (deletes) a subnet

Function ZGetSnlnfo
Called only on the master node to get subnet information

Function ZGetHiSubnet
Returns to the calling routine, the highest frame number in the subnet

Function ZGetNextSubnet
Generates the next subnet in the master node subnet index

2.8. ZOGMag

Routines In module ZogMsg are called when communication is necessary between machines.

* These routines send and receive ethernet request and reply packets. Each of the send and receive

routines has its own local handler, ElOReceiveDone, which is invoked when an interrupt is generated

on a machine due to the synchronous communication between machines. ElOReceiveDone examines

the Ethernet Handler State, and by it, controls execution of the routine.

9 Stnd Routines

SQMJ~lPAGE 51S ZOG MODULES PG5

* Receive Routines

* Message verification and handling routines

* Utlitibs

0 EtherNet Handier States

2.8.1. Send Routines

These routines send replies or acknowledgements to another machine.

K !2.8.1.1 Function SndRcvRecord

"For details on the inner workings of ZOGMsg.SndFlcvRecord see p. 23.

"2.8.1.2 Function ZogMsg.SendRecord

Sends a record to a remote machine and waits for an acknowledgement of receipt of the record.

wig 2.8.1.2.1 Sets addresses to be correct, in various records, so that the record can be

received or, the remote machine.

2.8.1.2.2 Resend Loop

At this point the SendRecord enters a loop to send a request to the other machine, saying, "Well,

Go ahead". The loop will attempt to send the request a maximum of NumberResends times (5). To

send the request, first the ethernet interrupts are turned off. Next, a call is made to Procedure

"EtherlOlO.ElOWIO which starts an EtherNet I/0 operation and waits for it to complete. In this case,

information is being sent, so El OWlO makes sure the information is sent over the EtherNet.

2.8.1.2.3 If an error is detected in sending the message, then exit SendRecord.

Otherwise, set the EtherNet Handler State to indicate that the local machine Is

waiting for the acknowledgement from the remote machine (SWaitAck) and turn

on the EtherNet interrupts.

2.8.1.2.4 Got Acknowledgement Time-Controlled Loop

If the acknowledgement Is received by the machine sending the message, an interrupt is generated,

causing an exception to be raised by the EtherNet MicroCode, thus invoking the local Handler

* ElOReceiveDone. ElOReceiveDone sees that the EtherNet Handler State indicates that the local

machine is waiting for an acknowledgement (SwaltAck), and Signals acknowledgement by assigning

the EtherNet Handler State to be that nf 'Got the Acknowledgement' (SGotAck). If the

acknowledgement is received, exit SendRecord.

SZO MQ[Lli PAGE 52

2.8.1.2.5 If after five attempts no acknowledgement Is received from the remote machine,.\,

then exit SendRecord with an error.

2.8.1.3 Function SendBuffer

For detials on the inner workings of ZOGMsg.SendBuffer see p. 36.

2.8.2. Receive Routines

Recieve routines receive requests and acknowledgements.

Function ReceiveRecord (For Details see p. 38).

Function ReceiveBuffer (For Details see p. 28).

2.8.3. Message verification and handling routines

For details on ZOGMsg.HandleMsg see p. 23.
Function ChkMsg Checks a message received to see if it is a valid ethernet message.

.. Function Hand/eMsg
Boolean function that returns true if there is a valid ZOG request.

Function AnotherMsg
"Tests if another message has been received and is waiting to be used inside the
handier, before exiting the handler. It is necessawy to petform this check and
process any additional messages before exiting the handler, beczuse the interrupt
for the additional messages has already occured, and was handled by an empty
"nested handler. If this is not done the message would be ignored until another
new message was received.

2.8.4. ZOGMsg Utilities
Function SwapByte

Used to swap two bytes of a word

Function CvlntStr Converts an integer to a decimal string

9.., Function EqAddr Used to test if two ether net addresses are equal; this is used to make sure a reply
or acknowledgement comes from the machine that It was supposed to

Procedure SuspendZCGMsg
Resets the network and removes any pending receiveis

Procedure ResurneZOOGMsg
resets the network and reposts all receives

Function InitZOGMsg
Initializes the ethernet and allocates all Ethernet buffeus

Procedure ResetZOGMsg
Resets the ethemet and deallocates all buffers

-s .."<.. S

Zg MODULES PAGE53

Functions GetMyAddr and GetMyName
Get address and name of this machine

Procedure RePpstReceive
Reposts a receive with buffers of the msg just received

2.8.5. EtherNet Handler States

Ethernet Handler States refer to the state of a particular machine which is involved in ethernet

communication with another machine. The 'state' of a machine can be, for example, that it is waiting

for an acknowledgement or that the machine has gotten a reply. It describes the status of the

communication between machines.

2.8.5.1 Common State : SNotReady (always the initial state)

2.8.5.2 ProbeName States SWaitProbe, SGotProbe (for reply to Probe msg)

2.8.5.3 SendRecord States - SWaitAck, SGotAck (for acknowledge of sent record)

2.8.5.4 ReceiveRecord States SWaitRcv, SGotRcv (for msg to be received)

2.8.5.5 SndRcvRecord States : SWaitSndAck, SWaitReply, SGotReply (Got Ack. and

waiting for reply, got reply)5
2.8.5.6 SendBuffer States.

* SWaitGo Waiting for the go ahead message.

SSendFirst Got Go ahead, sending the first buffer.

SWaitBufAck Waiting for an acknowledgement of a sent buffer.

SSentAII All buffers have been sent and acknowledged.

2.8.5.7 ReceiveBuffer States: SWaitGoAck, SRecelving, SGotAll (Waiting for ack to go

ahead, receiving buffer, got all information

2.9. ZOGMsgOels

Module ZOGMsgDefs defines the constants and record types used in module ZogMsg as ethemet

request and reply packets(records). The naming convention of the request packets Is to end the

pointer type with 'OPTyp', while the reply packets end in '1 PTyp'. In the case of the close frame roply

packets there is a second packet ending in '2PTyp'. Examples of ethernet request and reply packets

are below.

to

ZOG MODULES PAGE64

2.9.1. Ethernet Request packet records

* Module ZogMsgDefs contains the declarations of all of the Ethernet request and reply packets. For

the most part the types contained in this module are the same with small variations in the records, due

to the function of a particular type. Only two of the types will be shown here. The information

contained in these records allows the sending and receiving routines to accomplish their purpose (i.e.

opening, closing, etc.). This information is loaded in'o the appropriate record, recast to a message or

"* •buffer type and sent over the ethernet. On the remote machine, the appropriate receiving routine

knows the structure of the information in the request or reply packet, so it knows where to get the

"information it needs.

2.9.1.1 Open Frame Request Packet.

OpnFOPTyp = ltOpnFOTyp

OpnFOTyp = packed record
Id integer; Constant identifier in ZogMsgDefs

LocalAddr EthernetAddress;

RemoteAddr EtherNetAddress;

RemoteName String15;

GR GeneralReturn; used in return packet

Name UsrldTyp;

AgentFlag Boolean;

. Sid SidTyp; Subnet ID

PrimeNode NodeTyp;

SecCnt integer,

SecNodes SNodesTyp;

FrNum integer;

2.9.1.2 Open Frame Reply Packet

OpnF1PTyp - tOpnFlTyp

OpnFlTyp = paCKed record

Id integer; Constant identfier from ZogMsgDefs

LocalAddr EthernetAddress;

RemoteAddr EthernetAddress;

RemoteName String15;

G GR GeneralReturn; Return code from remote node

0. .. .• ? . : • . .

L2Q MOQULEft PAGE 55

FHBCnt long; Count of Frame Header pages
FBCnt long; Count of Frame Body pages

2.9.1.3 ',,lose Frame Request Packet

ClsFOPTyp = 'tClsFOTyp

C~sFOTyp =packed record
Id integer; Constant idertifter in ZogMsgDefs

o.ccalAddr EthernetAddress;

RemoteAddr EtherNetAddress;

RemoteName String'15;

GF? GeneralReturn; used in return packet

Name UsrldTyp;

AgentFlag Boolean;

*Sid SidTyp; Subnet ID

FrNum integer;

FBCnt long; Count of Frame Body Pages

2.9.1.4 Close Frame Reply Packet I

CIsFi PTyp a tClsFlTyp

CisFiTyp - packed record
Id Integer; Constant identfier from ZogMsgDefs

LocalAddr EtherAddress;

RemoteAddr EtherAddreWs

Rem oteName String 15;

*GR GeneralReturn; Return code from remote node

2.9.1.5 Close Frame Reply Packet 2

C~lsF2PTyp = tClsF2Typ

ClsF2Typ - packed record
Id integer, Constant identfier from ZogMsgDefs

LocalAdcir EthernetAddress;

RemoteAddr EthernetAddress;

RemoteName String'1S;

GR GeneralReturn, Return code from remote node

FHBCnt long; Count of Frame Header pages

ZOG MOUL~rSPAGE56

2.10. ZOGNetServer

Routines in Module ZogNetServer deal with subnet access on local and remote machines and the

building and maintenance of the local subnet database. These routines are called from routines in

module ZAccessProcs whenever frames of subnets or subnets themselves are being accessed. It also

builds and maintains the network servers database indicating the status of the other machines in the

ZOG network.

2.10.1. Su bnet Locating Routines
"Function GetSnLocal

Takes a subnet name and hashes into the local subnet database and find the
"correct subnet. Returns a boolean value of true if found. A pointei to ihe subnet
"record is returned in a variable parameter.

Function GetSnMaster
Tries to get information on a subnet by requesting it from the master node. This
will be called when the subnet is not found in the local subnet database and a
machine needs to know on what machine the subnei can be found. The function
returns a GeneralReturn type, indicating success or failure. Via parameters, it also

* Oreturns the primary node, and the number and identity of the secondary nodes.

Function GeiSnRecord
Hashes into the local subnet database to find a subnet. If not found there, it looks
in the subnet database of the master node. A side effect of a call to GetSnRecord
is to read the file if it is located on the local disk. Returns a GeneralReturn type
indcating success or failure.

Function ChkSnRecord
Is called by routines in ZNetProcs when a machine is being accessed for a cubnet,
therefore the information is assumed to be on the local machine. It returns the
same information as GetSnMaster and will attempt to read the file if it is located on
the local disk.

2.10.2. Subnet Maintenance Routines

Function CrSnRecord
Creates a subnet record and enters It into the subnet hash table (subnet

- •database). Returns a Genoralflettirn type and a pointer to the new entry.

Procedure ErSnRecord
"Deletes a subnet record from the subnet hash table in all bit the master node
index. This is used to force the next call of Function GetSnRecord to go to the
mastei" node for the information.

Function AddSnRecord
-T Inserte a new entry into the local subnet database.

Function OpnSnRecord
Takes a pointer to a subnot record from the local subnet database and opens the
local subnet file through a call to Function lJetServ.OpnSr-. The act of opening
is merely setting a boolean field at the subnet recod type.

.- ---

IN M.D12J, PAGE 57

Function Updatelndex
"Is used to update the Subnet.lndex file which stores the list of all subnets.

Function EntetSubnet
Ir used to enter a new subnet into the subnet database on the master node and to
update the Subnet.lndex file

Procedure BuildSubnets
"Is called by Procedure InitZogNetServer to construct the local subnet index.

2.10.3. Server Routines
Procedure BuildServers

Is called by Procedure lnitZogNetServers during the initialization of Zog to build
the servers index consisting of the machines on the network.

Function Probe Is used to test another network node, to see if it is actually up and running in Zog.
If that node is found to be up, via a call to Function ZogMsg.ProbeName, the
servers index is updated to indicate the node is up in Zog.

2.10.4. ZogNetServer Utility Routinos
Procedure CvStrUpper

Converts a string to all upper case

Procedures MsgError and PriniError
Used to output error messages

Function SnHash Is the hashing function for the subnet database

Function NxtSn Generates the next subnet name in the master nodes subnet database. If It
receives an empty string it returns the first entry in that table and if it returns the
empty string, then there were no more entries in the masters subnet index.

Procedure InitZogNetServer
Initializes the data structure for the ethernet and the ethernet itself so that it is
prepared to receive requests from other machines. It also call the routines to build
the subnet and servers Indexes.

3. ZOG Editor Modules

3.1. ZED Modules
ZCrFrame Procedures to Create Frames via tDi action or TDFC

ZDsplnc Low-Level Display Utilities and gobals for ZED and SLED

ZEdDefs ZED (and SLED) TypeDefs and Global Variabls

ZEdFram Full.Frame level ZED Commands (Upper Case Commands)

ZEdi! Main ZED Module Command Parsers, hidden area command3

ZEditem Per Item ZED Ccmmands (Lowe- Case Commands)

ZEdNew Module to Implemert mouse selection of text within frames (Not Currently Used)

ZO- M-O K PAGE 58

ZEdUtil Low-Level utility routines for ZED

3.2. SLED Modules
ZBrEd Special-purpose extension of SLED for AirPlan Frame Editing - Provides routines,

to break apart/put together AirPlan slots on specialized AirPlan input frames

* ZEnvEd Main Environmental Editor Module - Contains higher level slot editing procedures

ZEnvUtil Contains lower level slot editing utilities

ZS/ed Main SLED Module- SLED Command Parser, AirPlan utilities

ZS/edUtiI Contains lower level SLED support functions

4. ZOG Agents Modules

4.1. Planning and Evaluation (Task Management) Agents
AgAdjDt Adjusts the dates and times in a specific task tree

j AgGenr Creates a generic task tree from a specific task tree

AgGreen Submit task to Green Sheet

Ag/nst Instantiates a specific task tree from a generic task tree

AginTask Initializes a specific task tree

* - AgTPIan Creates a task plan from a specific task tree in disk file form for outputting to a
hard copy device

AgUpTask Updates a task tree "upward" to propagate leaf node changes

AgZPlan Creates a task plan from a specific task tree in a new tree of ZOG frames

AgP/an Creates a task plan from a specific task tree in disk file form for outputting to a
hard copy device

4.2. Backup and Transport Agents

These agents are used by system maintainers for reformatting subnets for backup and

"* transportation
* AgArchive Archive a subnet or frame to a floppy

AgBackup Write zbh for all perqs

AgBak Write zbh for all subnets modified since a specific date and time for a specified
Perq

AgVBH Write Perq ZOG frames in VAX zbh format

* AgZBH Write zbh format of Perq ZOG frames

p--.

• *

ZGQDULES PAGE 59

4.3. ZOG Special function Agents

4.3.1. Writing frames In a form suitable for printing
AgDoc - Write a tree of frames into a disk file using a format suitable for printing

AgPic Write a single frame into a disk file without changing the format

4.3.2. Saving old versions of frames
AgOld Copies a frame, linking the copy to the frame through an Old loc- psd

AgPost Saves the current version of a frame as an Old frame, then ciea the frame ,next
copy the schema of the Oth frame to the current frame

"4.3.3. Utilities
AgHiSubNum Vinson utility routines

AgLink Links an option to the frame in the other windo in an accessor-like manner.r (Experimental)

AgMessage Send a message to another Perq

AgTest Schema for creating new agents

AgCode Create a text file ready for compiling from a code subnet

4.3.4. Fonts and Graphics
AgBar Creates a bar graph from a given data frame

AgRFont Changes the fonts for a given subnet

4.3.5. Creating an index or directory of subnets
AgAIphaSNL Creates an index of subnets either alphabetically or by Perq

AgOir Creates a directory for subnets on a Perq or all Perqs

AgIndex Creates an alphabetical index to subnets on a Perq or all Perqs

4.4. Subnet Repair and Updating Agents

AgMerge Standardizes a subnets local pads to that of a given schema frame

AgPar Corrects all bad parent and top links

AgProt Modifies the protection on frames

AgSwap Global string replacement

AgOwn Adds or deletes the owner of a frame or frames

AgChkSecond Checks secondary copy of a subne

fr

SM..O.DULES PAGE 60

4.5. SORM and Weapons Elevator Agents

"The SORM and Weapons Elevator Agents are very specialized. Moml of the following agents are

"used in formatting the document that is produced when the SORM and Weapons Elevator subnets are

written out.

4.5.1. AgDgm: Writes out a chapter of diagrams
" .• This agent will print, in scribe compatable format, a tree of frames The format is for diagrams and

GAPL(Government Allowance Parts List). Each frame corresponds to one picture and each picture

may have a GAPL associated with it.

4.5.2. AgGAPL: Prints a tree of frames in scribe compatable format

This agent will print in scribe compatable format, a tree of frames. The format is for

GAPL(Government Allowance Parts List) and prints a depth first search list of all parts in the tree.

4.5.3. AgMgmt : Produces a listing of all the frames title text

This agent will produce a depth first listing of all the frames title text in addition to a cross reference
to the current frame. It is currently being used to generate the Apendix for the management codes in

the organization section of the ships SORM.

4.5.4. AgOpr : Prints a tree of fraems in depth first search order

This agent will print a tree of frames in depth first search order. It is intended to print the operate

section of the Weapons Elevator Manual. It's main features are that it prints out title text and a mini

table of contents for each frame that has options.

4.5.5. AgOrg Prints lists of responsibilities of each billet

This agent will print a tree of frames in depth first search order. It is intended to print the

organization section of the ship's SORM. It prints a list of responsibilities of each billet with a cross

reference into the task net where it is defined.

4.5.6. AgTask : Prints out option text for each frame that has options

This agent will print a tree of frames in depth first search order. It is intended to print the understand

section of the Weapons Elevator Manual and the operate and maintain section of the ship's SORM.

It's main features are that It prints out option text for each frame that has options. It will also prin? a

mini table of contents if the frame has the keyword "CONTENTS" in the frame comment area.

V - -. .* V * V. V*--

,•-7..................7- - . - . ..

ZG MODULES PAGE61

4.5.7. AgText Prints out the frame text on each frams visited

This agent will print a tree of frames in depth first search order. It simply prints the frame text on

each frame visited. In addition it will follow any ">.More" local pads and follow any option tree that

exits on the "More" frame.

4.5.8. AgThy : Prints out theory section of Weapons Elevator Manual

This agent wil print a tree of frames in depth first search order. It is intended to print out the theory

section of the Weapons Elevator Manual and the ship's SORM. Option text is printed as the first

senteice of a paragraph with any frame text on the next frame appended to the end. Each

succeeding level is treated as a subparagraph of the proceeding paragraph and is indented as in an

outline. No local pad cross references are generated in this agent.

4.5,9. AgTrb : Prints out troubleshooting section of Weapons Elevator Manual

This agent will print out a tree of frames in depth first search order. It is intended to print the

troubleshooting section of the Weapons Elevator Manual. It's main features are that it prints out title

text and a mini table of contents for each frame that has options. It also generates "subchapter",

"section", "subsection", and "paragraph" commands for the first 4 levels in the tree. Each
successive level has the title text printed in bold face type.

4.5.10. AuxOrg : Prints out the appendixs for the ship's SORM

This agent will print out a tree of frames in depth first search order. It is intended to print the

appendixs in the ship's SORM for parts of the organization such as department heads, division

officers, leading chiefs, etc. Its only difference from AgOrg is that it will first mark a tree of frames as

having already been seen so that duplication will be avoided when only a partial list is desired. As a

side effect of having seen a frame before a cross reference is generated. In this way the list In an

appendix of division officers will point to thre correct location in the organization chapter. This is really

somewhat of a kludge since we cannot keep the frames vid from running AgOrg around for a seco

visited from running AgOrg around for a second run.

4.6. Agents Libraries

e AgentLib

9 ArchLIb

* EnvLib

9 Form-lb

o FramLib

C ~ ~ ~ ~ ~ ~ ~ W V11 -7 WM -- -J -C IvJq -V" -. IWT~V V~¶~ 1~ ~ r.1 TT¶ TV t *V. r 'Wý ~ -7 ' *

*Q Q1UE PAGE62

*FSeli~b

* PlanLib

0 SelLib

*StackLib

*ZFilelO

4.7. Shell Utility Modules

0 ZCopy

* ZCSDXNet

* Zelete

9 ZWirect

- * ZMount

* ZPath

* ZRemotePrint

* ZRename

* ZSearch

* ZStdError

*ZTypeFlle

4.8. Agent/Shell Utility Invocation Modules

*ZAgent

*ZXAAgent

* ZXBAgent

* ZShe~l

*ZXShIIl

ZOG MOULES PAGE 63

5. ZOG AirPlan Modules
"These modules are being maintained on board the USS CARL VINSON.

* AirCom

* AirDefs

* AirLib

* AirOutput

* ApChkMess

* ApFlOver

a ApLOver

* ApOpsFile

* ApPlOver

e ApPagePac

* ApROver

3 e ApSetEvt

* ApVerifyOut

* ZXAirPlan

6. PERQ Operating System Modules Imported by ZOG
*,: Many modules from the PERQ Operating System are used throughout ZOG. These modules export:

procedures for string manipul3tion, for memory allocation, raster ops, ethernet interrupt handling and

the like.
CmdParse Provides a number of routines to help with command parsing.

Dynamic Implimements Pascal dynamic memory allocation (New and Dispose)

Ether1010 Provides the interface to the 10 Mbaud Ethernet microcode.

* Etherinterrupt Provides the interrupt service for the Ethernet.

"" Except Provides the exception routines.

FlieSystem Provides the File System routines.

10 - Others Provides routines for the Cursor, Table, Screen, Time a& Keyboard

.

ZO M2ODULES PAGE 64

/0 - Private Exports interrupt routines and definitions which are private to the modules which

make up the IO system.

10 - Unit Provides procedures to perform I on the various 10 devices.

Memory Memory is the PERQ memory manager

PERQString Impliments the string manipulation routines for PERQ Pascal.

Screen Provides the interface to the PERQ screen including multiple windows

Stream Impliments low-level Pascal 10. It is called by higher level routines such as Reset,
ReWrite, Get, Put.

- System Initializes POS and goes into a loop alternately running Shell and ZOG.

N

9- !

, S

_o

Page 65

INITIAL DISTRIBUTION

Copies

1 USS CARL VINSON

1 ONR/270

12 DTIC

CENTER DISTRIBUTION

Cpe • Code Name

1 18 G. Gleissner

1 1808 D. Wildy

1 182 A. Camara

1 1826 J. Garner

1 1826 J. Jeffers

10 1826 D. Schmelter

a1 522.1 TIC (C)

1 522.2 TIC (A)

1 93 L. Marsh

.

- DTNSRDC ISSUES THREE TYPES OF REPORTS

1. DTNSRDC REPORTS, A FORMAL SERIES, CONTAIN INFORMATION OF PERMANENT TECH-

NICAL VALUE. THEY CARRY A CONSECUTIVE NUMERICAL IDENTIFICATION REGARDLESS OF

THEIR CLASSIFICATION OR THE ORIGINATING DEPARTMENT.

2. DEPARTMENTAL REPORTS, A SEMIFORMAL SERIES, CONTAIN INFORMATION OF A PRELIM-
- INARY, TEMPORARY, OR PROPRIETARY NATURE OR OF LIMITED INTEREST OR SIGNIFICANCE.
- THEY CARRY A DEPARTMENTAL ALPHANUMERICAL IDENTIFICATION.

3. TECHNICAL MEMORANDA, AN INFORMAL SERIES. CONTAIN TECHNICAL DOCUMENTATION
OF LIMITED USE AND INTEREST. THEY ARE PRIMARILY WORKING PAPERS INTENDED FOR IN-
TERNAL USE. THEY CARRY AN IDENTIFYING NUMBER WHICH INDICATES V HEIR TYPE AND THE
NUMERICAL CODE OF THE ORIGINATING DEPARTMENT. ANY DISTRIBUTION OUTSIDE DTNSRDC
MUST BE APPROVED BY THE HEAD OF THE ORIGINATING DEPARTMENT ON A CASE-BY-CASE
BASIS.

Ir

V.,,

.17 IV

is WIO-W -t

